文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在个体患者数据荟萃分析中研究事件发生时间结局的异质性。

Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes.

作者信息

Smith Catrin Tudur, Williamson Paula R, Marson Anthony G

机构信息

Centre for Medical Statistics and Health Evaluation, University of Liverpool, Liverpool L69 3BX, UK.

出版信息

Stat Med. 2005 May 15;24(9):1307-19. doi: 10.1002/sim.2050.


DOI:10.1002/sim.2050
PMID:15685717
Abstract

Differences across studies in terms of design features and methodology, clinical procedures, and patient characteristics, are factors that can contribute to variability in the treatment effect between studies in a meta-analysis (statistical heterogeneity). Regression modelling can be used to examine relationships between treatment effect and covariates with the aim of explaining the variability in terms of clinical, methodological, or other factors. Such an investigation can be undertaken using aggregate data or individual patient data. An aggregate data approach can be problematic as sufficient data are rarely available and translating aggregate effects to individual patients can often be misleading. An individual patient data approach, although usually more resource demanding, allows a more thorough investigation of potential sources of heterogeneity and enables a fuller analysis of time to event outcomes in meta-analysis. Hierarchical Cox regression models are used to identify and explore the evidence for heterogeneity in meta-analysis and examine the relationship between covariates and censored failure time data in this context. Alternative formulations of the model are possible and illustrated using individual patient data from a meta-analysis of five randomized controlled trials which compare two drugs for the treatment of epilepsy. The models are further applied to simulated data examples in which the degree of heterogeneity and magnitude of treatment effect are varied. The behaviour of each model in each situation is explored and compared.

摘要

不同研究在设计特点、方法学、临床程序和患者特征方面存在差异,这些因素可能导致荟萃分析中各研究间治疗效果的变异性(统计学异质性)。回归建模可用于检验治疗效果与协变量之间的关系,目的是从临床、方法学或其他因素方面解释这种变异性。此类调查可使用汇总数据或个体患者数据进行。汇总数据方法可能存在问题,因为很少能获得足够的数据,而且将汇总效应转化为个体患者的情况往往会产生误导。个体患者数据方法虽然通常对资源要求更高,但能更全面地调查异质性的潜在来源,并能在荟萃分析中更充分地分析事件发生时间结局。分层Cox回归模型用于识别和探索荟萃分析中异质性的证据,并在此背景下检验协变量与删失失败时间数据之间的关系。该模型有其他形式,并使用来自五项比较两种治疗癫痫药物的随机对照试验的荟萃分析中的个体患者数据进行了说明。这些模型进一步应用于模拟数据示例,其中异质性程度和治疗效果大小有所不同。探索并比较了每种情况下每个模型的行为。

相似文献

[1]
Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes.

Stat Med. 2005-5-15

[2]
An overview of methods and empirical comparison of aggregate data and individual patient data results for investigating heterogeneity in meta-analysis of time-to-event outcomes.

J Eval Clin Pract. 2005-10

[3]
Aggregate data meta-analysis with time-to-event outcomes.

Stat Med. 2002-11-30

[4]
Investigating trial and treatment heterogeneity in an individual patient data meta-analysis of survival data by means of the penalized maximum likelihood approach.

Stat Med. 2008-5-20

[5]
Meta-analysis of continuous outcomes combining individual patient data and aggregate data.

Stat Med. 2008-5-20

[6]
Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses.

J Clin Epidemiol. 2005-3

[7]
Meta-analysis of continuous outcome data from individual patients.

Stat Med. 2001-8-15

[8]
Statistical issues in the assessment of the evidence for an interaction between factors in epilepsy trials.

Stat Med. 2002-9-30

[9]
Meta-analysis of diagnostic test studies using individual patient data and aggregate data.

Stat Med. 2008-12-20

[10]
Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials.

Clin Trials. 2009-2

引用本文的文献

[1]
Meta-Analysis Using Time-to-Event Data: A Tutorial.

Cochrane Evid Synth Methods. 2025-8-26

[2]
Network Meta-Analysis With Individual Participant-Level Data of Time-to-Event Outcomes Using Cox Regression.

Stat Med. 2025-2-28

[3]
Pharmacokinetic analysis across studies to drive knowledge-integration: A tutorial on individual patient data meta-analysis (IPDMA).

CPT Pharmacometrics Syst Pharmacol. 2023-9

[4]
CA-125 Early Dynamics to Predict Overall Survival in Women with Newly Diagnosed Advanced Ovarian Cancer Based on Meta-Analysis Data.

Cancers (Basel). 2023-3-17

[5]
Radiotherapy Fraction in Limited-Stage Small Cell Lung Cancer in the Modern Era: A Systematic Review and Meta-Analysis of 8006 Reconstructed Individual Patient Data.

Cancers (Basel). 2022-12-31

[6]
Transportability Methods for Time-to-Event Outcomes: Application in Adjuvant Colon Cancer Trials.

JCO Clin Cancer Inform. 2022-12

[7]
Risk of Hepatocellular Carcinoma With Tenofovir vs Entecavir Treatment for Chronic Hepatitis B Virus: A Reconstructed Individual Patient Data Meta-analysis.

JAMA Netw Open. 2022-6-1

[8]
Dolutegravir Monotherapy as Maintenance Strategy: A Meta-Analysis of Individual Participant Data From Randomized Controlled Trials.

Open Forum Infect Dis. 2022-3-4

[9]
BAGS: A Bayesian Adaptive Group Sequential Trial Design With Subgroup-Specific Survival Comparisons.

J Am Stat Assoc. 2021

[10]
Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention for Multivessel Coronary Artery Disease: A One-Stage Meta-Analysis.

Front Cardiovasc Med. 2022-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索