Rondeau V, Michiels S, Liquet B, Pignon J P
INSERM U875 (Biostatistics), Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France.
Stat Med. 2008 May 20;27(11):1894-910. doi: 10.1002/sim.3161.
In a meta-analysis combining survival data from different clinical trials, an important issue is the possible heterogeneity between trials. Such intertrial variation can not only be explained by heterogeneity of treatment effects across trials but also by heterogeneity of their baseline risk. In addition, one might examine the relationship between magnitude of the treatment effect and the underlying risk of the patients in the different trials. Such a scenario can be accounted for by using additive random effects in the Cox model, with a random trial effect and a random treatment-by-trial interaction. We propose to use this kind of model with a general correlation structure for the random effects and to estimate parameters and hazard function using a semi-parametric penalized marginal likelihood method (maximum penalized likelihood estimators). This approach gives smoothed estimates of the hazard function, which represents incidence in epidemiology. The idea for the approach in this paper comes from the study of heterogeneity in a large meta-analysis of randomized trials in patients with head and neck cancers (meta-analysis of chemotherapy in head and neck cancers) and the effect of adding chemotherapy to locoregional treatment. The simulation study and the application demonstrate that the proposed approach yields satisfactory results and they illustrate the need to use a flexible variance-covariance structure for the random effects.
在一项综合了不同临床试验生存数据的荟萃分析中,一个重要问题是各试验之间可能存在的异质性。这种试验间的差异不仅可以用各试验治疗效果的异质性来解释,还可以用其基线风险的异质性来解释。此外,人们可能会研究不同试验中治疗效果的大小与患者潜在风险之间的关系。这种情况可以通过在Cox模型中使用加性随机效应来解释,其中包括一个随机试验效应和一个随机的试验与治疗交互作用。我们建议使用这种对随机效应具有一般相关结构的模型,并使用半参数惩罚边际似然法(最大惩罚似然估计器)来估计参数和风险函数。这种方法给出了风险函数的平滑估计,该函数在流行病学中代表发病率。本文中该方法的思路来源于对头颈部癌患者随机试验的大型荟萃分析(头颈部癌化疗的荟萃分析)中的异质性研究以及在局部区域治疗中添加化疗的效果。模拟研究和应用表明,所提出的方法产生了令人满意的结果,并且它们说明了对随机效应使用灵活的方差 - 协方差结构的必要性。