Dahl Christiane, Engels Sabine, Pott-Sperling Andrea S, Schulte Andrea, Sander Johannes, Lübbe Yvonne, Deuster Oliver, Brune Daniel C
Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany.
J Bacteriol. 2005 Feb;187(4):1392-404. doi: 10.1128/JB.187.4.1392-1404.2005.
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180(T)). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble alpha(2)beta(2)gamma(2)-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.
在dsrABEFHCMK基因的紧邻下游立即鉴定出7个新基因,命名为dsrLJOPNSR,从而完成了光合硫细菌嗜酒色杆菌D(DSM 180(T))的dsr基因簇。转座子诱变证明了编码蛋白在细胞内硫氧化过程中的关键作用,细胞内硫是硫化物和硫代硫酸盐氧化过程中的一种必需中间体。虽然dsrR和dsrS编码功能未知的胞质蛋白,但其他基因编码一种预测的NADPH:受体氧化还原酶(DsrL)、一种三血红素c型细胞色素(DsrJ)、一种周质铁硫蛋白(DsrO)和一种整合膜蛋白(DsrP)。DsrN类似于钴胺酸a,c - 二酰胺合酶,可能参与了siro(血红素)酰胺的生物合成,siro(血红素)酰胺是dsrAB编码的亚硫酸盐还原酶的辅基。通过蛋白质免疫印迹分析验证了嗜酒色杆菌中大多数预测的Dsr蛋白的存在。除了组成性存在的DsrC外,硫化物极大地增强了Dsr基因产物的形成。DsrEFH从可溶性组分中纯化出来,构成一种可溶性的α(2)β(2)γ(2)结构的75 kDa全蛋白。DsrKJO从膜中纯化出来,表明存在由DsrKMJOP组成的跨膜电子传递复合物。根据异化硫酸盐还原菌的相关复合物将电子传递给亚硫酸盐还原酶的推测,嗜酒色杆菌Dsr复合物与亚硫酸盐还原酶、DsrEFH和DsrC共纯化。因此,我们现在有了一个理想且独特的机会来研究亚硫酸盐还原酶与其他蛋白质的相互作用,并阐明长期存在的亚硫酸盐还原酶的电子传递问题,不仅在光合细菌中,而且在硫酸盐还原原核生物中。