Suppr超能文献

在酵母中与BLM RecQ解旋酶直系同源的Sgs1突变体中,依赖Rad51的DNA结构在受损的复制叉处积累。

Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase.

作者信息

Liberi Giordano, Maffioletti Giulio, Lucca Chiara, Chiolo Irene, Baryshnikova Anastasia, Cotta-Ramusino Cecilia, Lopes Massimo, Pellicioli Achille, Haber James E, Foiani Marco

机构信息

F.I.R.C. Institute of Molecular Oncology Foundation, 20141, Milan, Italy.

出版信息

Genes Dev. 2005 Feb 1;19(3):339-50. doi: 10.1101/gad.322605.

Abstract

S-phase cells overcome chromosome lesions through replication-coupled recombination processes that seem to be assisted by recombination-dependent DNA structures and/or replication-related sister chromatid junctions. RecQ helicases, including yeast Sgs1 and human BLM, have been implicated in both replication and recombination and protect genome integrity by preventing unscheduled mitotic recombination events. We have studied the RecQ helicase-mediated mechanisms controlling genome stability by analyzing replication forks encountering a damaged template in sgs1 cells. We show that, in sgs1 mutants, recombination-dependent cruciform structures accumulate at damaged forks. Their accumulation requires Rad51 protein, is counteracted by Srs2 DNA helicase, and does not prevent fork movement. Sgs1, but not Srs2, promotes resolution of these recombination intermediates. A functional Rad53 checkpoint kinase that is known to protect the integrity of the sister chromatid junctions is required for the accumulation of recombination intermediates in sgs1 mutants. Finally, top3 and top3 sgs1 mutants accumulate the same structures as sgs1 cells. We suggest that, in sgs1 cells, the unscheduled accumulation of Rad51-dependent cruciform structures at damaged forks result from defective maturation of recombination-dependent intermediates that originate from the replication-related sister chromatid junctions. Our findings might contribute to explaining some of the recombination defects of BLM cells.

摘要

S期细胞通过复制偶联的重组过程克服染色体损伤,这些过程似乎由依赖重组的DNA结构和/或与复制相关的姐妹染色单体连接所辅助。RecQ解旋酶,包括酵母中的Sgs1和人类中的BLM,参与复制和重组过程,并通过防止意外的有丝分裂重组事件来保护基因组完整性。我们通过分析sgs1细胞中遇到受损模板的复制叉,研究了RecQ解旋酶介导的控制基因组稳定性的机制。我们发现,在sgs1突变体中,依赖重组的十字形结构在受损叉处积累。它们的积累需要Rad51蛋白,被Srs2 DNA解旋酶抵消,并且不阻止叉的移动。Sgs1促进这些重组中间体的解离,而Srs2则不能。sgs1突变体中重组中间体的积累需要功能性的Rad53检查点激酶,已知该激酶可保护姐妹染色单体连接的完整性。最后,top3和top3 sgs1突变体积累与sgs1细胞相同的结构。我们认为,在sgs1细胞中,受损叉处Rad51依赖的十字形结构的意外积累是由于源自与复制相关的姐妹染色单体连接点的重组依赖中间体的成熟缺陷所致。我们的发现可能有助于解释BLM细胞的一些重组缺陷。

相似文献

4
Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability.
Mutat Res. 2003 Nov 27;532(1-2):157-72. doi: 10.1016/j.mrfmmm.2003.08.015.
5
Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae.
Genetics. 2002 Oct;162(2):647-62. doi: 10.1093/genetics/162.2.647.
9
Mitotic inter-homologue junctions accumulate at damaged DNA replication forks in recQ mutants.
DNA Repair (Amst). 2010 Jun 4;9(6):661-9. doi: 10.1016/j.dnarep.2010.02.017. Epub 2010 Mar 25.
10
BLM helicase complements disrupted type II telomere lengthening in telomerase-negative sgs1 yeast.
Cancer Res. 2005 Jul 1;65(13):5520-2. doi: 10.1158/0008-5472.CAN-05-0632.

引用本文的文献

1
KNO1-mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination.
EMBO J. 2023 May 15;42(10):e111980. doi: 10.15252/embj.2022111980. Epub 2023 Mar 27.
3
Leveraging the replication stress response to optimize cancer therapy.
Nat Rev Cancer. 2023 Jan;23(1):6-24. doi: 10.1038/s41568-022-00518-6. Epub 2022 Nov 2.
4
Dynamic alternative DNA structures in biology and disease.
Nat Rev Genet. 2023 Apr;24(4):211-234. doi: 10.1038/s41576-022-00539-9. Epub 2022 Oct 31.
5
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice.
J Fungi (Basel). 2022 Jun 10;8(6):621. doi: 10.3390/jof8060621.
6
Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance.
Genes Dev. 2022 Feb 1;36(3-4):167-179. doi: 10.1101/gad.349207.121. Epub 2022 Feb 3.
7
Non-Recombinogenic Functions of Rad51, BRCA2, and Rad52 in DNA Damage Tolerance.
Genes (Basel). 2021 Sep 29;12(10):1550. doi: 10.3390/genes12101550.
8
Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells.
Mol Cell. 2021 Oct 7;81(19):4026-4040.e8. doi: 10.1016/j.molcel.2021.09.013.
9
rescues the mild methylmethane sulfonate sensitivity of Δ cells in .
MicroPubl Biol. 2021 Sep 24;2021. doi: 10.17912/micropub.biology.000480. eCollection 2021.

本文引用的文献

1
Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells.
Mol Cell. 2005 Jan 7;17(1):153-9. doi: 10.1016/j.molcel.2004.11.032.
2
Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein.
J Biol Chem. 2004 May 28;279(22):23193-9. doi: 10.1074/jbc.M402586200. Epub 2004 Mar 27.
3
RAD51-dependent break-induced replication in yeast.
Mol Cell Biol. 2004 Mar;24(6):2344-51. doi: 10.1128/MCB.24.6.2344-2351.2004.
5
The Bloom's syndrome helicase suppresses crossing over during homologous recombination.
Nature. 2003 Dec 18;426(6968):870-4. doi: 10.1038/nature02253.
7
Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast.
Cell. 2003 Nov 14;115(4):401-11. doi: 10.1016/s0092-8674(03)00886-9.
8
The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over.
Curr Biol. 2003 Nov 11;13(22):1954-62. doi: 10.1016/j.cub.2003.10.059.
9
DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray.
Nat Genet. 2003 Nov;35(3):277-86. doi: 10.1038/ng1258. Epub 2003 Oct 19.
10
Holliday junctions in the eukaryotic nucleus: resolution in sight?
Trends Biochem Sci. 2003 Oct;28(10):548-57. doi: 10.1016/j.tibs.2003.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验