Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
PLoS Genet. 2023 Feb 7;19(2):e1010639. doi: 10.1371/journal.pgen.1010639. eCollection 2023 Feb.
The bypass of DNA lesions that block replicative polymerases during DNA replication relies on DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway depends on specialized DNA polymerases that incorporate nucleotides in front of base lesions, potentially inducing mutagenesis. Two error-free pathways can bypass the lesions: the template switching pathway, which uses the sister chromatid as a template, and the homologous recombination pathway (HR), which also can use the homologous chromosome as template. The balance between error-prone and error-free pathways controls the mutagenesis level. Therefore, it is crucial to precisely characterize factors that influence the pathway choice to better understand genetic stability at replication forks. In yeast, the complex formed by the Rad51 paralogs Rad55 and Rad57 promotes HR and template-switching at stalled replication forks. At DNA double-strand breaks (DSBs), this complex promotes Rad51 filament formation and stability, notably by counteracting the Srs2 anti-recombinase. To explore the role of the Rad55-Rad57 complex in error-free pathways, we monitored the genetic interactions between Rad55-Rad57, the translesion polymerases Polζ or Polη, and Srs2 following UV radiation that induces mostly single-strand DNA gaps. We found that the Rad55-Rad57 complex was involved in three ways. First, it protects Rad51 filaments from Srs2, as it does at DSBs. Second, it promotes Rad51 filament stability independently of Srs2. Finally, we observed that UV-induced HR is almost abolished in Rad55-Rad57 deficient cells, and is partially restored upon Polζ or Polη depletion. Hence, we propose that the Rad55-Rad57 complex is essential to promote Rad51 filament stability on single-strand DNA gaps, notably to counteract the error-prone TLS polymerases and mutagenesis.
在 DNA 复制过程中,复制聚合酶会遇到阻碍复制的 DNA 损伤,此时需要绕过这些损伤。这一过程依赖于 DNA 损伤容忍通路。易错的跨损伤合成(TLS)途径依赖于专门的 DNA 聚合酶,这些酶能够在碱基损伤前掺入核苷酸,从而潜在地诱导突变。有两条无差错的通路可以绕过损伤:模板转换通路,该通路使用姐妹染色单体作为模板;同源重组通路(HR),该通路也可以使用同源染色体作为模板。易错通路和无差错通路之间的平衡控制着突变率。因此,准确描述影响通路选择的因素对于更好地理解复制叉处的遗传稳定性至关重要。在酵母中,由 Rad51 同源物 Rad55 和 Rad57 组成的复合物促进停滞复制叉处的 HR 和模板转换。在 DNA 双链断裂(DSB)处,该复合物促进 Rad51 丝形成和稳定性,特别是通过拮抗 Srs2 抗重组酶。为了探究 Rad55-Rad57 复合物在无差错通路上的作用,我们在紫外线(UV)诱导的主要形成单链 DNA 缺口的情况下,监测了 Rad55-Rad57 与跨损伤聚合酶 Polζ 或 Polη 以及 Srs2 之间的遗传相互作用。我们发现 Rad55-Rad57 复合物有三种作用方式。首先,它像在 DSB 处一样保护 Rad51 丝免受 Srs2 的影响。其次,它独立于 Srs2 促进 Rad51 丝稳定性。最后,我们观察到 Rad55-Rad57 缺陷细胞中的 UV 诱导 HR 几乎被完全阻断,而在 Polζ 或 Polη 耗尽时部分恢复。因此,我们提出 Rad55-Rad57 复合物对于促进单链 DNA 缺口处的 Rad51 丝稳定性至关重要,特别是可以拮抗易错的 TLS 聚合酶和突变。