Luo Huaien, Puthusserypady Sadasivan
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
IEEE Trans Biomed Eng. 2007 Aug;54(8):1371-81. doi: 10.1109/TBME.2007.900795.
Functional magnetic resonance imaging (fMRI) is an important technique for neuroimaging. The conventional system identification methods used in fMRI data analysis assume a linear time-invariant system with the impulse response described by the hemodynamic responses (HDR). However, the measured blood oxygenation level-dependent (BOLD) signals to a particular processing task (for example, rapid event-related fMRI design) show nonlinear properties and vary with different brain regions and subjects. In this paper, radial basis function (RBF) neural network (a powerful technique for modelling nonlinearities) is proposed to model the dynamics underlying the fMRI data. The equivalence of the proposed method to the existing Volterra series method has been demonstrated. It is shown that the first- and second-order Volterra kernels could be deduced from the parameters of the RBF neural network. Studies on both simulated (using Balloon model) as well as real event-related fMRI data show that the proposed method can accurately estimate the HDR of the brain and capture the variations of the HDRs as a function of the brain regions and subjects.
功能磁共振成像(fMRI)是神经成像的一项重要技术。fMRI数据分析中使用的传统系统识别方法假定存在一个线性时不变系统,其脉冲响应由血液动力学响应(HDR)描述。然而,针对特定处理任务(例如,快速事件相关fMRI设计)测得的血氧水平依赖(BOLD)信号呈现出非线性特性,并且会因不同脑区和受试者而有所不同。本文提出用径向基函数(RBF)神经网络(一种强大的非线性建模技术)来对fMRI数据背后的动力学进行建模。已证明所提方法与现有的沃尔泰拉级数方法等效。结果表明,一阶和二阶沃尔泰拉核可从RBF神经网络的参数中推导得出。对模拟数据(使用球囊模型)以及实际事件相关fMRI数据的研究表明,所提方法能够准确估计大脑的HDR,并捕捉HDR随脑区和受试者的变化情况。