Suppr超能文献

大肠杆菌中厌氧聚(R)-3-羟基丁酸合成的动力学研究及生化途径分析

Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in Escherichia coli.

作者信息

Carlson Ross, Wlaschin Aaron, Srienc Friedrich

机构信息

Department of Chemical Engineering and Materials Science and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave., St. Paul, MN 55108, USA.

出版信息

Appl Environ Microbiol. 2005 Feb;71(2):713-20. doi: 10.1128/AEM.71.2.713-720.2005.

Abstract

Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 +/- 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.

摘要

聚(R)-3-羟基丁酸(PHB)在重组大肠杆菌中厌氧合成。在生长培养基或非生长培养基中培养期间,宿主细胞厌氧积累的PHB超过其细胞干重的50%。生长相关合成过程中的最大比PHB生产率约为2.3±0.2 mmol PHB/ g残留细胞干重/小时。PHB合成菌株和对照菌株的副产物分泌谱有显著差异。对于生长相关和非生长相关的PHB合成,PHB的产生均降低了乙酸盐的积累。例如,在非生长培养条件下,与对照培养物相比,PHB合成培养物基于葡萄糖产量产生的乙酸盐减少了约66%。使用理论生化网络模型为解释发酵产物分泌谱等实验结果以及研究大肠杆菌在厌氧条件下的网络能力提供合理依据。例如,大肠杆菌中厌氧合成PHB的最大理论碳产率为0.8。本研究有望普遍用于分析、解释和设计细胞代谢。

相似文献

1
Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in Escherichia coli.
Appl Environ Microbiol. 2005 Feb;71(2):713-20. doi: 10.1128/AEM.71.2.713-720.2005.
2
Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli.
Appl Microbiol Biotechnol. 1997 Feb;47(2):140-3. doi: 10.1007/s002530050902.
5
A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli.
Bioresour Technol. 2010 Oct;101(19):7675-8. doi: 10.1016/j.biortech.2010.04.084. Epub 2010 May 15.
7
Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically.
Appl Microbiol Biotechnol. 2014 Dec;98(24):10013-21. doi: 10.1007/s00253-014-6059-y. Epub 2014 Sep 13.
8
Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli.
Appl Environ Microbiol. 1997 Dec;63(12):4765-9. doi: 10.1128/aem.63.12.4765-4769.1997.
9
Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production.
Appl Microbiol Biotechnol. 2009 Jul;83(5):939-47. doi: 10.1007/s00253-009-1943-6. Epub 2009 Apr 9.

引用本文的文献

2
Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in .
Synth Syst Biotechnol. 2023 Sep 27;8(4):629-639. doi: 10.1016/j.synbio.2023.09.005. eCollection 2023 Dec.
3
Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives.
Environ Sci Ecotechnol. 2020 Apr 24;2:100029. doi: 10.1016/j.ese.2020.100029. eCollection 2020 Apr.
4
6
Microscale Quantitative Analysis of Polyhydroxybutyrate in Prokaryotes Using IDMS.
Metabolites. 2017 May 17;7(2):19. doi: 10.3390/metabo7020019.
7
Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine.
Extremophiles. 2016 May;20(3):261-74. doi: 10.1007/s00792-015-0806-6. Epub 2016 Feb 18.
8
The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations.
Appl Environ Microbiol. 2015 Oct 23;82(1):244-54. doi: 10.1128/AEM.02984-15. Print 2016 Jan 1.
9
Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies.
World J Microbiol Biotechnol. 2015 Sep;31(9):1315-28. doi: 10.1007/s11274-015-1887-1. Epub 2015 Jun 12.
10
Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production.
Appl Environ Microbiol. 2014 May;80(9):2880-8. doi: 10.1128/AEM.03804-13. Epub 2014 Feb 28.

本文引用的文献

1
Pathway analysis, engineering, and physiological considerations for redirecting central metabolism.
Biotechnol Bioeng. 1996 Oct 5;52(1):129-40. doi: 10.1002/(SICI)1097-0290(19961005)52:1<129::AID-BIT13>3.0.CO;2-J.
2
Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli.
Biotechnol Bioeng. 1995 Jul 5;47(1):8-19. doi: 10.1002/bit.260470103.
7
The microbiology of biological phosphorus removal in activated sludge systems.
FEMS Microbiol Rev. 2003 Apr;27(1):99-127. doi: 10.1016/S0168-6445(03)00021-4.
8
Metabolic network structure determines key aspects of functionality and regulation.
Nature. 2002 Nov 14;420(6912):190-3. doi: 10.1038/nature01166.
9
Analysis of optimality in natural and perturbed metabolic networks.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7. doi: 10.1073/pnas.232349399. Epub 2002 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验