Godoy Manuel S, Nikel Pablo I, Cabrera Gomez José G, Pettinari M Julia
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Buenos Aires, Argentina.
Systems and Synthetic Biology Program, Spanish National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
Appl Environ Microbiol. 2015 Oct 23;82(1):244-54. doi: 10.1128/AEM.02984-15. Print 2016 Jan 1.
The CreBC (carbon source-responsive) two-component regulation system of Escherichia coli affects a number of functions, including intermediary carbon catabolism. The impacts of different creC mutations (a ΔcreC mutant and a mutant carrying the constitutive creC510 allele) on bacterial physiology were analyzed in glucose cultures under three oxygen availability conditions. Differences in the amounts of extracellular metabolites produced were observed in the null mutant compared to the wild-type strain and the mutant carrying creC510 and shown to be affected by oxygen availability. The ΔcreC strain secreted more formate, succinate, and acetate but less lactate under low aeration. These metabolic changes were associated with differences in AckA and LdhA activities, both of which were affected by CreC. Measurement of the NAD(P)H/NAD(P)(+) ratios showed that the creC510 strain had a more reduced intracellular redox state, while the opposite was observed for the ΔcreC mutant, particularly under intermediate oxygen availability conditions, indicating that CreC affects redox balance. The null mutant formed more succinate than the wild-type strain under both low aeration and no aeration. Overexpression of the genes encoding phosphoenolpyruvate carboxylase from E. coli and a NADH-forming formate dehydrogenase from Candida boidinii in the ΔcreC mutant further increased the yield of succinate on glucose. Interestingly, the elimination of ackA and adhE did not significantly improve the production of succinate. The diverse metabolic effects of this regulator on the central biochemical network of E. coli make it a good candidate for metabolic-engineering manipulations to enhance the formation of bioproducts, such as succinate.
大肠杆菌的CreBC(碳源响应)双组分调节系统影响许多功能,包括中间碳分解代谢。在三种氧气供应条件下的葡萄糖培养物中,分析了不同creC突变(ΔcreC突变体和携带组成型creC510等位基因的突变体)对细菌生理学的影响。与野生型菌株和携带creC510的突变体相比,在缺失突变体中观察到细胞外代谢物产生量的差异,并且显示受氧气供应的影响。在低通气条件下,ΔcreC菌株分泌更多的甲酸、琥珀酸和乙酸,但乳酸较少。这些代谢变化与AckA和LdhA活性的差异有关,两者均受CreC影响。NAD(P)H/NAD(P)(+)比率的测量表明,creC510菌株的细胞内氧化还原状态更还原,而对于ΔcreC突变体则观察到相反情况,特别是在中等氧气供应条件下,表明CreC影响氧化还原平衡。在低通气和无通气条件下,缺失突变体比野生型菌株形成更多的琥珀酸。在ΔcreC突变体中过表达来自大肠杆菌的磷酸烯醇丙酮酸羧化酶基因和来自博伊丁假丝酵母的形成NADH的甲酸脱氢酶基因进一步提高了葡萄糖上琥珀酸的产量。有趣的是,消除ackA和adhE并没有显著提高琥珀酸的产量。该调节因子对大肠杆菌中心生化网络的多种代谢作用使其成为代谢工程操作以增强生物产品(如琥珀酸)形成的良好候选对象。