Luque-Almagro Víctor M, Huertas María-J, Martínez-Luque Manuel, Moreno-Vivián Conrado, Roldán M Dolores, García-Gil L Jesús, Castillo Francisco, Blasco Rafael
Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad SN, E-10071 Cáceres, Spain.
Appl Environ Microbiol. 2005 Feb;71(2):940-7. doi: 10.1128/AEM.71.2.940-947.2005.
A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.
已分离出一种在碱性条件下能够以氰化物作为唯一氮源的细菌菌株。通过将其16S RNA基因序列与现有菌株的序列进行比较,该细菌被归类为假产碱假单胞菌,并作为CECT5344菌株保藏于西班牙模式培养物保藏中心(Coleccion Espanola de Cultivos Tipo)。氰化物的消耗是一个同化过程,因为:(i)细菌生长与氰化物降解同时发生且成比例;(ii)在谷氨酰胺合成酶抑制剂l-蛋氨酸-d,l-亚砜亚胺存在的情况下,该细菌能将氰化物按化学计量转化为铵。该细菌能够在碱性培养基中生长,初始pH值可达11.5,并且能够耐受浓度高达30 mM的游离氰化物,这使其成为生物处理受氰化物污染残渣的良好候选菌株。乙酸盐和d,l-苹果酸盐都是氰营养生长的合适碳源,但在以氰化物作为唯一碳源的培养基中未检测到生长。除了氰化物外,假产碱假单胞菌CECT5344还利用其他氮源,即铵、硝酸盐、氰酸盐、氰基乙酰胺、硝铁氰化物(硝普钠)以及多种氰化物-金属络合物。氰化物和铵同时被同化,而氰化物强烈抑制硝酸盐和亚硝酸盐的同化。在以氰化物或氰酸盐作为氮源生长期间会诱导氰酶活性,但以铵或硝酸盐作为氮源时则不会。这一结果表明氰酸盐可能是氰化物降解途径中的一个中间产物,但也不能排除其他途径。