Suppr超能文献

碱性条件下细菌对氰化物及其金属配合物的降解

Bacterial degradation of cyanide and its metal complexes under alkaline conditions.

作者信息

Luque-Almagro Víctor M, Huertas María-J, Martínez-Luque Manuel, Moreno-Vivián Conrado, Roldán M Dolores, García-Gil L Jesús, Castillo Francisco, Blasco Rafael

机构信息

Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad SN, E-10071 Cáceres, Spain.

出版信息

Appl Environ Microbiol. 2005 Feb;71(2):940-7. doi: 10.1128/AEM.71.2.940-947.2005.

Abstract

A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.

摘要

已分离出一种在碱性条件下能够以氰化物作为唯一氮源的细菌菌株。通过将其16S RNA基因序列与现有菌株的序列进行比较,该细菌被归类为假产碱假单胞菌,并作为CECT5344菌株保藏于西班牙模式培养物保藏中心(Coleccion Espanola de Cultivos Tipo)。氰化物的消耗是一个同化过程,因为:(i)细菌生长与氰化物降解同时发生且成比例;(ii)在谷氨酰胺合成酶抑制剂l-蛋氨酸-d,l-亚砜亚胺存在的情况下,该细菌能将氰化物按化学计量转化为铵。该细菌能够在碱性培养基中生长,初始pH值可达11.5,并且能够耐受浓度高达30 mM的游离氰化物,这使其成为生物处理受氰化物污染残渣的良好候选菌株。乙酸盐和d,l-苹果酸盐都是氰营养生长的合适碳源,但在以氰化物作为唯一碳源的培养基中未检测到生长。除了氰化物外,假产碱假单胞菌CECT5344还利用其他氮源,即铵、硝酸盐、氰酸盐、氰基乙酰胺、硝铁氰化物(硝普钠)以及多种氰化物-金属络合物。氰化物和铵同时被同化,而氰化物强烈抑制硝酸盐和亚硝酸盐的同化。在以氰化物或氰酸盐作为氮源生长期间会诱导氰酶活性,但以铵或硝酸盐作为氮源时则不会。这一结果表明氰酸盐可能是氰化物降解途径中的一个中间产物,但也不能排除其他途径。

相似文献

1
Bacterial degradation of cyanide and its metal complexes under alkaline conditions.
Appl Environ Microbiol. 2005 Feb;71(2):940-7. doi: 10.1128/AEM.71.2.940-947.2005.
2
Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344.
Biochem Soc Trans. 2005 Feb;33(Pt 1):168-9. doi: 10.1042/BST0330168.
3
Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an enzyme that is not essential for cyanide assimilation.
Appl Environ Microbiol. 2008 Oct;74(20):6280-8. doi: 10.1128/AEM.00916-08. Epub 2008 Aug 15.
7
A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.
Appl Environ Microbiol. 2017 Apr 17;83(9). doi: 10.1128/AEM.00089-17. Print 2017 May 1.
8
Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH.
J Hazard Mater. 2010 Jul 15;179(1-3):72-8. doi: 10.1016/j.jhazmat.2010.02.059. Epub 2010 Feb 25.
9
Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions.
Microbiol Spectr. 2021 Dec 22;9(3):e0077721. doi: 10.1128/Spectrum.00777-21. Epub 2021 Nov 3.
10

引用本文的文献

2
Genomic Insights into Cyanide Biodegradation in the Genus.
Int J Mol Sci. 2024 Apr 18;25(8):4456. doi: 10.3390/ijms25084456.
3
Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by CECT 5344.
Int J Mol Sci. 2023 Apr 13;24(8):7232. doi: 10.3390/ijms24087232.
4
Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions.
Microbiol Spectr. 2021 Dec 22;9(3):e0077721. doi: 10.1128/Spectrum.00777-21. Epub 2021 Nov 3.
5
Carbon Source Influence on Extracellular pH Changes along Bacterial Cell-Growth.
Genes (Basel). 2020 Oct 30;11(11):1292. doi: 10.3390/genes11111292.
7
A Case of Adaptive Laboratory Evolution (ALE): Biodegradation of Furfural by CECT 5344.
Genes (Basel). 2019 Jun 29;10(7):499. doi: 10.3390/genes10070499.
9
Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors.
Curr Microbiol. 2020 Apr;77(4):578-587. doi: 10.1007/s00284-019-01694-9. Epub 2019 May 20.

本文引用的文献

1
Biological cyanide destruction mediated by microorganisms.
World J Microbiol Biotechnol. 1995 May;11(3):257-65. doi: 10.1007/BF00367095.
2
Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.
Proc Natl Acad Sci U S A. 1984 May;81(10):3059-63. doi: 10.1073/pnas.81.10.3059.
3
Cyanide Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated from Contaminated Soils.
Appl Environ Microbiol. 1997 Jul;63(7):2729-34. doi: 10.1128/aem.63.7.2729-2734.1997.
4
Incorporation of Molecular Oxygen and Water during Enzymatic Oxidation of Cyanide by Pseudomonas fluorescens NCIMB 11764.
Appl Environ Microbiol. 1996 Jun;62(6):2195-7. doi: 10.1128/aem.62.6.2195-2197.1996.
5
Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3.
J Biosci Bioeng. 2000;89(3):274-7. doi: 10.1016/s1389-1723(00)88833-7.
7
CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies.
Appl Environ Microbiol. 2003 Aug;69(8):4794-805. doi: 10.1128/AEM.69.8.4794-4805.2003.
8
Bacterial iron homeostasis.
FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37. doi: 10.1016/S0168-6445(03)00055-X.
9
Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands.
Science. 2003 Feb 14;299(5609):1067-70. doi: 10.1126/science.1080972.
10
Acquisition of siderophores in gram-negative bacteria.
Nat Rev Mol Cell Biol. 2003 Feb;4(2):105-16. doi: 10.1038/nrm1015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验