Luque-Almagro Víctor M, Huertas María-J, Sáez Lara P, Luque-Romero Manuel Martínez, Moreno-Vivián Conrado, Castillo Francisco, Roldán M Dolores, Blasco Rafael
Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
Appl Environ Microbiol. 2008 Oct;74(20):6280-8. doi: 10.1128/AEM.00916-08. Epub 2008 Aug 15.
Cyanase catalyzes the decomposition of cyanate into CO(2) and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel sigma(54)-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5 degrees C and a temperature of 65 degrees C. An insertion mutation was generated in the cynS gene. The resulting mutant was unable to use cyanate as the sole nitrogen source but showed the same resistance to cyanate as the wild-type strain. These results, in conjunction with the induction pattern of the enzymatic activity, suggest that the enzyme has an assimilatory function. Although the induction of cyanase activity in cyanide-degrading cells suggests that some cyanate may be generated from cyanide, the cynS mutant was not affected in its ability to degrade cyanide, which unambiguously indicates that cyanate is not a central metabolite in cyanide assimilation.
氰酸酶催化氰酸盐分解为二氧化碳和铵,其中氨基甲酸酯是不稳定的中间体。假产碱假单胞菌CECT5344的氰酸酶受到铵的负调控,而受到氰酸盐、氰化物和一些氰金属配合物的正调控。在用铵培养的细胞提取物中未检测到氰酸酶活性,即使存在氰酸盐也是如此。然而,在氮饥饿的细胞中检测到了低水平的氰酸酶活性。对假产碱假单胞菌CECT5344的cyn基因簇进行了克隆和分析。cynA、cynB和cynD基因编码一种ABC型转运蛋白,cynS基因编码氰酸酶,cynF基因编码一种新型的依赖于sigma(54)的转录调节因子,其他细菌的cyn基因簇中不存在该调节因子。CynS蛋白在大肠杆菌中表达,并通过一种简单快速的方案进行纯化。假产碱假单胞菌氰酸酶的最适pH为8.5℃,最适温度为65℃。在cynS基因中产生了插入突变。所得突变体不能将氰酸盐用作唯一氮源,但对氰酸盐的抗性与野生型菌株相同。这些结果与酶活性的诱导模式相结合,表明该酶具有同化功能。尽管在降解氰化物的细胞中氰酸酶活性的诱导表明可能从氰化物中产生了一些氰酸盐,但cynS突变体降解氰化物的能力并未受到影响,这明确表明氰酸盐不是氰化物同化的中心代谢物。