Lowe Gordon D O
Professor of Vascular Medicine, University Department of Medicine Royal Infirmary, Glasgow, UK.
Pathophysiol Haemost Thromb. 2003;33(5-6):455-7. doi: 10.1159/000083845.
Virchow rightly recognised that blood flow plays an important role in thrombosis. The roles of blood flow in haemostasis, and in arterial, intra-cardiac, and venous thrombosis are reviewed. In streamline (laminar) flow, shear stresses are maximal at the vessel wall, and affect endothelial cell morphology and function (e.g. secretion of NO, prostacyclin,t-PA and vWF). Platelets are also concentrated at the vessel wall (due to axial concentration of red cells)where they can be activated by high shear stresses and are well-placed to interact with vWF and subendothelium,resulting in platelet adhesion and the initial stages of haemostasis. On the other hand, increasing wall shear forces increase removal of thrombin and fibrin monomer, hence stasis (induced by internal or external pressure) is required to allow fibrin formation and secondary haemostasis. Atherogenesis occurs in areas of arterial flow separation,which promotes platelet, leucocyte, LDL and fibrinogen adhesion and wall infiltration. Rheological variables (e.g. wall shear stress, viscosity, haematocrit,fibrinogen, LDL) have been correlated with the extent of ultrasonic carotid intima-media thickening. Arterial thrombosis usually follows rupture of atherosclerotic plaques and intra-plaque haemorrhage: high intra-stenotic shear stresses may activate platelets,promoting the initial platelet-rich "white-head" of arterial thrombi, while low post-stenotic shear stresses may promote the subsequent, fibrin--and red cell-rich "red tail". Blood viscosity, platelet microemboli, and activated leucocytes may each reduce post-stenotic microcirculatory blood flow, promoting infarction. Such mechanisms may explain the associations of increased levels of blood and plasma viscosity, haematocrit, white cell count, fibrinogen and vWF with risk and outcome of myocardial, cerebral and limb infarction. Areas of recirculating blood flow under low shear stresses predispose to intracardiac thromboembolism(e.g. atrial fibrillation, in which elevated fibrin D-dimer levels are normalised after cardioversion) and venous thromboembolism (fibrin D-dimer levels are associated with most risk factors). There is good evidence that reduction of venous stasis in the legs reduces the risk of venous thromboembolism. There is increasing evidence that regular exercise and avoidance of immobility reduces the risk of both arterial and venous thrombosis and also has systemic antithrombotic and anti-inflammatory effects. So: "Go with the flow!"
魏尔啸正确地认识到血流在血栓形成中起着重要作用。本文综述了血流在止血以及动脉、心脏内和静脉血栓形成中的作用。在层流中,剪切应力在血管壁处最大,会影响内皮细胞的形态和功能(例如一氧化氮、前列环素、组织型纤溶酶原激活物和血管性血友病因子的分泌)。血小板也集中在血管壁处(由于红细胞的轴向集中),在那里它们可被高剪切应力激活,并易于与血管性血友病因子和内皮下层相互作用,从而导致血小板黏附及止血的起始阶段。另一方面,增加的壁剪切力会增加凝血酶和纤维蛋白单体的清除,因此需要血流淤滞(由内部或外部压力引起)以形成纤维蛋白并实现二期止血。动脉粥样硬化发生在动脉血流分离区域,这会促进血小板、白细胞、低密度脂蛋白和纤维蛋白原的黏附及血管壁浸润。流变学变量(例如壁剪切应力、粘度、血细胞比容、纤维蛋白原、低密度脂蛋白)与颈动脉超声内膜中层增厚程度相关。动脉血栓形成通常继发于动脉粥样硬化斑块破裂和斑块内出血:狭窄部位内的高剪切应力可能激活血小板,促进富含血小板的动脉血栓的初始“白头”形成,而狭窄部位后的低剪切应力可能促进随后富含纤维蛋白和红细胞的“红尾”形成。血液粘度、血小板微栓子和活化的白细胞均可降低狭窄部位后的微循环血流,促进梗死形成。这些机制可能解释了血液和血浆粘度、血细胞比容、白细胞计数、纤维蛋白原和血管性血友病因子水平升高与心肌梗死、脑梗死和肢体梗死的风险及预后之间的关联。低剪切应力下的血液再循环区域易发生心脏内血栓栓塞(例如心房颤动,其中纤维蛋白D - 二聚体水平在复律后恢复正常)和静脉血栓栓塞(纤维蛋白D - 二聚体水平与大多数危险因素相关)。有充分证据表明减轻腿部静脉淤滞可降低静脉血栓栓塞的风险。越来越多的证据表明,规律运动和避免长期不活动可降低动脉和静脉血栓形成的风险,并且还具有全身性抗血栓和抗炎作用。所以:“顺应血流!”