Suppr超能文献

基于自动超声分割和形态学的实性乳腺肿瘤诊断

Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors.

作者信息

Chang Ruey-Feng, Wu Wen-Jie, Moon Woo Kyung, Chen Dar-Ren

机构信息

Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan.

出版信息

Breast Cancer Res Treat. 2005 Jan;89(2):179-85. doi: 10.1007/s10549-004-2043-z.

Abstract

Ultrasound (US) is a useful diagnostic tool to distinguish benign from malignant masses of the breast. It is a very convenient and safe diagnostic method. However, there is a considerable overlap benignancy and malignancy in ultrasonic images and interpretation is subjective. A high performance breast tumors computer-aided diagnosis (CAD) system can provide an accurate and reliable diagnostic second opinion for physicians to distinguish benign breast lesions from malignant ones. The potential of sonographic texture analysis to improve breast tumor classifications has been demonstrated. However, the texture analysis is system-dependent. The disadvantages of these systems which use texture analysis to classify tumors are they usually perform well only in one specific ultrasound system. While Morphological based US diagnosis of breast tumor will take the advantage of nearly independent to either the setting of US system and different US machines. In this study, the tumors are segmented using the newly developed level set method at first and then six morphologic features are used to distinguish the benign and malignant cases. The support vector machine (SVM) is used to classify the tumors. There are 210 ultrasonic images of pathologically proven benign breast tumors from 120 patients and carcinomas from 90 patients in the ultrasonic image database. The database contains only one image from each patient. The ultrasonic images are captured at the largest diameter of the tumor. The images are collected consecutively from August 1, 1999 to May 31, 2000; the patients' ages ranged from 18 to 64 years. Sonography is performed using an ATL HDI 3000 system with a L10-5 small part transducer. In the experiment, the accuracy of SVM with shape information for classifying malignancies is 90.95% (191/210), the sensitivity is 88.89% (80/90), the specificity is 92.5% (111/120), the positive predictive value is 89.89% (80/89), and the negative predictive value is 91.74% (111/121).

摘要

超声(US)是区分乳腺良性和恶性肿块的一种有用的诊断工具。它是一种非常便捷且安全的诊断方法。然而,超声图像中良性和恶性的表现有相当大的重叠,且解读具有主观性。一个高性能的乳腺肿瘤计算机辅助诊断(CAD)系统可以为医生提供准确可靠的诊断参考意见,以区分乳腺良性病变和恶性病变。超声纹理分析在改善乳腺肿瘤分类方面的潜力已得到证实。然而,纹理分析依赖于系统。这些使用纹理分析对肿瘤进行分类的系统的缺点是,它们通常仅在一个特定的超声系统中表现良好。而基于形态学的乳腺肿瘤超声诊断将具有几乎独立于超声系统设置和不同超声机器的优势。在本研究中,首先使用新开发的水平集方法对肿瘤进行分割,然后使用六个形态学特征来区分良性和恶性病例。支持向量机(SVM)用于对肿瘤进行分类。超声图像数据库中有来自120例患者的210幅经病理证实的乳腺良性肿瘤超声图像和来自90例患者的癌超声图像。该数据库中每位患者仅包含一幅图像。超声图像是在肿瘤的最大直径处采集的。图像是从1999年8月1日至2000年5月31日连续收集的;患者年龄在18至64岁之间。使用配备L10 - 5小部件换能器的ATL HDI 3000系统进行超声检查。在实验中,带有形状信息的支持向量机对恶性肿瘤分类的准确率为90.95%(191/210),灵敏度为88.89%(80/90),特异性为92.5%(111/120),阳性预测值为89.89%(80/89),阴性预测值为91.74%(111/121)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验