Muroran Institute of Technology, Hokkaido, Japan.
Hokkaido University Hospital, Hokkaido, Japan.
BMC Med Imaging. 2023 Aug 29;23(1):114. doi: 10.1186/s12880-023-01072-9.
In recent years, contrast-enhanced ultrasonography (CEUS) has been used for various applications in breast diagnosis. The superiority of CEUS over conventional B-mode imaging in the ultrasound diagnosis of the breast lesions in clinical practice has been widely confirmed. On the other hand, there have been many proposals for computer-aided diagnosis of breast lesions on B-mode ultrasound images, but few for CEUS. We propose a semi-automatic classification method based on machine learning in CEUS of breast lesions.
The proposed method extracts spatial and temporal features from CEUS videos and breast tumors are classified as benign or malignant using linear support vector machines (SVM) with combination of selected optimal features. In the proposed method, tumor regions are extracted using the guidance information specified by the examiners, then morphological and texture features of tumor regions obtained from B-mode and CEUS images and TIC features obtained from CEUS video are extracted. Then, our method uses SVM classifiers to classify breast tumors as benign or malignant. During SVM training, many features are prepared, and useful features are selected. We name our proposed method "Ceucia-Breast" (Contrast Enhanced UltraSound Image Analysis for BREAST lesions).
The experimental results on 119 subjects show that the area under the receiver operating curve, accuracy, precision, and recall are 0.893, 0.816, 0.841 and 0.920, respectively. The classification performance is improved by our method over conventional methods using only B-mode images. In addition, we confirm that the selected features are consistent with the CEUS guidelines for breast tumor diagnosis. Furthermore, we conduct an experiment on the operator dependency of specifying guidance information and find that the intra-operator and inter-operator kappa coefficients are 1.0 and 0.798, respectively.
The experimental results show a significant improvement in classification performance compared to conventional classification methods using only B-mode images. We also confirm that the selected features are related to the findings that are considered important in clinical practice. Furthermore, we verify the intra- and inter-examiner correlation in the guidance input for region extraction and confirm that both correlations are in strong agreement.
近年来,对比增强超声(CEUS)已被广泛应用于乳腺诊断的各种领域。CEUS 在临床实践中对乳腺病变的超声诊断的优越性已得到广泛证实,优于传统的 B 型超声成像。另一方面,已有许多针对 B 型超声图像的乳腺病变计算机辅助诊断的建议,但针对 CEUS 的却很少。我们提出了一种基于机器学习的半自动化分类方法,用于乳腺病变的 CEUS。
该方法从 CEUS 视频中提取空间和时间特征,然后使用线性支持向量机(SVM)对良性和恶性乳腺肿瘤进行分类,同时结合选择的最佳特征。在该方法中,使用由检查者指定的指导信息提取肿瘤区域,然后从 B 型超声和 CEUS 图像中提取肿瘤区域的形态和纹理特征以及从 CEUS 视频中提取 TIC 特征。然后,我们的方法使用 SVM 分类器对乳腺肿瘤进行良性和恶性分类。在 SVM 训练过程中,准备了许多特征,并选择了有用的特征。我们将我们提出的方法命名为“Ceucia-Breast”(用于乳腺病变的对比增强超声图像分析)。
对 119 名受试者的实验结果表明,接收器操作曲线下面积、准确性、精确性和召回率分别为 0.893、0.816、0.841 和 0.920。与仅使用 B 型超声图像的传统方法相比,我们的方法提高了分类性能。此外,我们还确认所选择的特征与 CEUS 乳腺肿瘤诊断指南一致。此外,我们还对指定指导信息的操作人员依赖性进行了实验,发现内操作员和外操作员的 Kappa 系数分别为 1.0 和 0.798。
与仅使用 B 型超声图像的传统分类方法相比,实验结果表明分类性能有显著提高。我们还确认所选择的特征与临床实践中认为重要的发现有关。此外,我们验证了区域提取指导输入的内和外检查者相关性,并确认这两个相关性具有很强的一致性。