Fleury Eduardo, Marcomini Karem
Instituto Brasileiro de Controle do Câncer (IBCC), São Paulo, Brazil.
Centro Universitário São Camilo, Curso de Medicina, São Paulo, Brazil.
Eur Radiol Exp. 2019 Aug 5;3(1):34. doi: 10.1186/s41747-019-0112-7.
The purpose of this work was to evaluate computable Breast Imaging Reporting and Data System (BI-RADS) radiomic features to classify breast masses on ultrasound B-mode images.
The database consisted of 206 consecutive lesions (144 benign and 62 malignant) proved by percutaneous biopsy in a prospective study approved by the local ethical committee. A radiologist manually delineated the contour of the lesions on greyscale images. We extracted the main ten radiomic features based on the BI-RADS lexicon and classified the lesions as benign or malignant using a bottom-up approach for five machine learning (ML) methods: multilayer perceptron (MLP), decision tree (DT), linear discriminant analysis (LDA), random forest (RF), and support vector machine (SVM). We performed a 10-fold cross validation for training and testing of all classifiers. Receiver operating characteristic (ROC) analysis was used for providing the area under the curve with 95% confidence intervals (CI).
The classifier with the highest AUC at ROC analysis was SVM (AUC = 0.840, 95% CI 0.6667-0.9762), with 71.4% sensitivity (95% CI 0.6479-0.8616) and 76.9% specificity (95% CI 0.6148-0.8228). The best AUC for each method was 0.744 (95% CI 0.677-0.774) for DT, 0.818 (95% CI 0.6667-0.9444) for LDA, 0.811 (95% CI 0.710-0.892) for RF, and 0.806 (95% CI 0.677-0.839) for MLP. Lesion margin and orientation were the optimal features for all the machine learning methods.
ML can aid the distinction between benign and malignant breast lesion on ultrasound images using quantified BI-RADS descriptors. SVM provided the highest ROC-AUC (0.840).
本研究旨在评估可计算的乳腺影像报告和数据系统(BI-RADS)影像组学特征,以在超声B模式图像上对乳腺肿块进行分类。
该数据库包含在当地伦理委员会批准的一项前瞻性研究中经经皮活检证实的206个连续病变(144个良性和62个恶性)。一名放射科医生在灰度图像上手动勾勒病变轮廓。我们基于BI-RADS词典提取了十个主要影像组学特征,并使用自下而上的方法对五种机器学习(ML)方法(多层感知器(MLP)、决策树(DT)、线性判别分析(LDA)、随机森林(RF)和支持向量机(SVM))将病变分类为良性或恶性。我们对所有分类器进行了10倍交叉验证以进行训练和测试。使用受试者操作特征(ROC)分析来提供曲线下面积及95%置信区间(CI)。
在ROC分析中AUC最高的分类器是SVM(AUC = 0.840,95% CI 0.6667 - 0.9762),灵敏度为71.4%(95% CI 0.6479 - 0.8616),特异度为76.9%(95% CI 0.6148 - 0.8228)。每种方法的最佳AUC分别为:DT为0.744(95% CI 0.677 - 0.774),LDA为0.818(95% CI 0.6667 - 0.9444),RF为0.811(95% CI 0.710 - 0.892),MLP为0.806(95% CI 0.677 - 0.839)。病变边缘和方向是所有机器学习方法的最佳特征。
机器学习可以使用量化的BI-RADS描述符辅助区分超声图像上的良性和恶性乳腺病变。SVM提供了最高的ROC-AUC(0.840)。