Araújo A D, Andrade J S, Herrmann H J
Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066150. doi: 10.1103/PhysRevE.70.066150. Epub 2004 Dec 30.
We study a multiple invasion model to simulate corrosion or intrusion processes. Estimated values for the fractal dimension of the invaded region reveal that the critical exponents vary as a function of the generation number G , i.e., with the number of times the invasion process takes place. The averaged mass M of the invaded region decreases with a power law as a function of G , M approximately Gbeta , where the exponent beta approximately 0.6 . We also find that the fractal dimension of the invaded cluster changes from d(1) =1.887+/-0.002 to d(s) =1.217+/-0.005 . This result confirms that the multiple invasion process (for the case in which uninvaded regions are forbidden) follows a continuous transition from one universality class (nontrapping invasion percolation) to another (optimal path). In addition, we report extensive numerical simulations that indicate that the mass distribution of avalanches P (S,L) has a power-law behavior and we find that the exponent tau governing the power-law P (S,L) approximately S-tau changes continuously as a function of the parameter G . We propose a scaling law for the mass distribution of avalanches for different number of generations G .
我们研究了一个多重入侵模型来模拟腐蚀或入侵过程。对入侵区域分形维数的估计值表明,临界指数随世代数G变化,即随入侵过程发生的次数而变化。入侵区域的平均质量M随幂律随G减小,M约为G^β,其中指数β约为0.6。我们还发现入侵簇的分形维数从d(1)=1.887±0.002变为d(s)=1.217±0.005。这一结果证实了多重入侵过程(对于禁止未入侵区域的情况)遵循从一个普适类(非捕获入侵渗流)到另一个(最优路径)的连续转变。此外,我们报告了广泛的数值模拟,表明雪崩的质量分布P(S,L)具有幂律行为,并且我们发现控制幂律P(S,L)约为S^-τ的指数τ随参数G连续变化。我们针对不同世代数G提出了雪崩质量分布的标度律。