Suppr超能文献

非线性滤波器对去趋势波动分析的影响。

Effect of nonlinear filters on detrended fluctuation analysis.

作者信息

Chen Zhi, Hu Kun, Carpena Pedro, Bernaola-Galvan Pedro, Stanley H Eugene, Ivanov Plamen Ch

机构信息

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011104. doi: 10.1103/PhysRevE.71.011104. Epub 2005 Jan 12.

Abstract

When investigating the dynamical properties of complex multiple-component physical and physiological systems, it is often the case that the measurable system's output does not directly represent the quantity we want to probe in order to understand the underlying mechanisms. Instead, the output signal is often a linear or nonlinear function of the quantity of interest. Here, we investigate how various linear and nonlinear transformations affect the correlation and scaling properties of a signal, using the detrended fluctuation analysis (DFA) which has been shown to accurately quantify power-law correlations in nonstationary signals. Specifically, we study the effect of three types of transforms: (i) linear ( y(i) =a x(i) +b) , (ii) nonlinear polynomial ( y(i) =a x(k)(i) ) , and (iii) nonlinear logarithmic [ y(i) =log ( x(i) +Delta) ] filters. We compare the correlation and scaling properties of signals before and after the transform. We find that linear filters do not change the correlation properties, while the effect of nonlinear polynomial and logarithmic filters strongly depends on (a) the strength of correlations in the original signal, (b) the power k of the polynomial filter, and (c) the offset Delta in the logarithmic filter. We further apply the DFA method to investigate the "apparent" scaling of three analytic functions: (i) exponential [exp (+/-x+a) ] , (ii) logarithmic [log (x+a) ] , and (iii) power law [ (x+a)(lambda) ] , which are often encountered as trends in physical and biological processes. While these three functions have different characteristics, we find that there is a broad range of values for parameter a common for all three functions, where the slope of the DFA curves is identical. We further note that the DFA results obtained for a class of other analytic functions can be reduced to these three typical cases. We systematically test the performance of the DFA method when estimating long-range power-law correlations in the output signals for different parameter values in the three types of filters and the three analytic functions we consider.

摘要

在研究复杂的多组分物理和生理系统的动力学特性时,经常会出现这样的情况:可测量的系统输出并不直接代表我们为了理解潜在机制而想要探究的量。相反,输出信号通常是感兴趣量的线性或非线性函数。在此,我们使用去趋势波动分析(DFA)来研究各种线性和非线性变换如何影响信号的相关性和标度特性,该方法已被证明能准确量化非平稳信号中的幂律相关性。具体而言,我们研究三种变换类型的影响:(i)线性变换(y(i) = a x(i) + b),(ii)非线性多项式变换(y(i) = a x(k)(i)),以及(iii)非线性对数变换[y(i) = log(x(i) + Δ)]滤波器。我们比较变换前后信号的相关性和标度特性。我们发现线性滤波器不会改变相关性特性,而非线性多项式和对数滤波器的影响强烈依赖于:(a)原始信号中的相关性强度,(b)多项式滤波器的幂次k,以及(c)对数滤波器中的偏移量Δ。我们进一步应用DFA方法来研究三个解析函数的“表观”标度:(i)指数函数[exp(±x + a)],(ii)对数函数[log(x + a)],以及(iii)幂律函数[(x + a)(λ)],这些函数在物理和生物过程中经常作为趋势出现。虽然这三个函数具有不同的特性,但我们发现对于所有这三个函数都存在一个广泛的参数a值范围,在该范围内DFA曲线的斜率是相同的。我们还注意到,对于一类其他解析函数获得的DFA结果可以简化为这三种典型情况。我们系统地测试了DFA方法在估计我们所考虑的三种滤波器类型和三个解析函数的不同参数值下输出信号中的长程幂律相关性时的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验