Grech Dariusz, Mazur Zygmunt
Institute of Theoretical Physics, University of Wrocław, Pl. M. Borna 9, PL-50-204 Wrocław, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052809. doi: 10.1103/PhysRevE.87.052809. Epub 2013 May 23.
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R^{2} of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
我们将之前针对去趋势波动分析(DFA)[《物理A》392, 2384 (2013)]所进行的标度范围特性研究扩展至其他波动分析(FA)技术。我们引入了一种名为修正去趋势移动平均分析(MDMA)的新技术,并对其标度范围特性进行了研究,并与去趋势移动平均分析(DMA)和DFA的特性进行了比较。结果表明,与DFA不同,DMA和MDMA技术在标度范围上呈现出幂律依赖性,这既与所搜索信号的长度有关,也与DMA或MDMA方法所施加的拟合到所考虑标度律的精度R²有关。这种幂律依赖性对于不相关数据和自相关数据均成立。我们还发现了这种幂律关系对于具有不同自相关水平(以赫斯特指数衡量)的序列的一种简单推广。我们还讨论了不同技术的标度范围之间的基本关系。我们的研究结果对于例如经济物理学、金融或生理学中的局部FA应该特别有用,在这些领域中,需要一次性检查大量的短时间序列,而且对每个序列分别进行标度范围区域的初步检查既无效也不可能。