Suppr超能文献

趋势对去趋势波动分析的影响。

Effect of trends on detrended fluctuation analysis.

作者信息

Hu K, Ivanov P C, Chen Z, Carpena P, Stanley H E

机构信息

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011114. doi: 10.1103/PhysRevE.64.011114. Epub 2001 Jun 26.

Abstract

Detrended fluctuation analysis (DFA) is a scaling analysis method used to estimate long-range power-law correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling results obtained from the DFA method become difficult to analyze. We systematically study the effects of three types of trends--linear, periodic, and power-law trends, and offer examples where these trends are likely to occur in real data. We compare the difference between the scaling results for artificially generated correlated noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the "apparent" scaling of the trend. We study how the characteristics of these crossovers depend on (i) the slope of the linear trend; (ii) the amplitude and period of the periodic trend; (iii) the amplitude and power of the power-law trend, and (iv) the length as well as the correlation properties of the noise. Surprisingly, we find that the crossovers in the scaling of noisy signals with trends also follow scaling laws--i.e., long-range power-law dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not followed, this is an indication that the noise and the superposed trend are not independent, so that removing the trend could lead to changes in the correlation properties of the noise. In addition, we show how to use DFA appropriately to minimize the effects of trends, how to recognize if a crossover indicates indeed a transition from one type to a different type of underlying correlation, or if the crossover is due to a trend without any transition in the dynamical properties of the noise.

摘要

去趋势波动分析(DFA)是一种用于估计噪声信号中长程幂律相关指数的标度分析方法。实际系统中的许多噪声信号都呈现出趋势,这使得从DFA方法获得的标度结果难以分析。我们系统地研究了三种类型的趋势——线性趋势、周期性趋势和幂律趋势的影响,并给出了这些趋势可能出现在实际数据中的示例。我们比较了人工生成的相关噪声和带有趋势的相关噪声的标度结果之间的差异,并研究了趋势如何导致标度行为中出现交叉现象。我们发现交叉现象是由噪声的标度与趋势的“表观”标度之间的竞争导致的。我们研究了这些交叉现象的特征如何取决于:(i)线性趋势的斜率;(ii)周期性趋势的幅度和周期;(iii)幂律趋势的幅度和幂次;以及(iv)噪声的长度和相关特性。令人惊讶的是,我们发现带有趋势的噪声信号标度中的交叉现象也遵循标度律——即交叉位置与趋势参数之间的长程幂律依赖关系。我们表明,假设噪声和趋势不相关,带有趋势的噪声的DFA结果可以通过DFA对噪声和趋势的单独结果的叠加精确确定。如果不遵循这种叠加规则,这表明噪声和叠加的趋势不是独立的,因此去除趋势可能会导致噪声相关特性的变化。此外,我们展示了如何适当地使用DFA来最小化趋势的影响,如何识别交叉现象是否确实表明从一种类型的潜在相关性转变为另一种类型,或者交叉现象是否是由于趋势而噪声的动力学特性没有任何转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验