Flores Anthony R, Parsons Linda M, Pavelka Martin S
University of Rochester School of Medicine and Dentistry and Department of Microbiology and Immunology, Rochester, NY 14642, USA.
The Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
Microbiology (Reading). 2005 Feb;151(Pt 2):521-532. doi: 10.1099/mic.0.27629-0.
Mycobacteria produce beta-lactamases and are intrinsically resistant to beta-lactam antibiotics. In addition to the beta-lactamases, cell envelope permeability and variations in certain peptidoglycan biosynthetic enzymes are believed to contribute to beta-lactam resistance in these organisms. To allow the study of these additional mechanisms, mutants of the major beta-lactamases, BlaC and BlaS, were generated in the pathogenic Mycobacterium tuberculosis strain H37Rv and the model organism Mycobacterium smegmatis strain PM274. The mutants M. tuberculosis PM638 (DeltablaC1) and M. smegmatis PM759 (DeltablaS1) showed an increase in susceptibility to beta-lactam antibiotics, as determined by disc diffusion and minimal inhibitory concentration (MIC) assays. The susceptibility of the mutants, as assayed by disc diffusion tests, to penicillin-type beta-lactam antibiotics was affected most, compared to the cephalosporin-type beta-lactam antibiotics. The M. tuberculosis mutant had no detectable beta-lactamase activity, while the M. smegmatis mutant had a residual type 1 beta-lactamase activity. We identified a gene, blaE, encoding a putative cephalosporinase in M. smegmatis. A double beta-lactamase mutant of M. smegmatis, PM976 (DeltablaS1DeltablaE : : res), had no detectable beta-lactamase activity, but its susceptibility to beta-lactam antibiotics was not significantly different from that of the DeltablaS1 parental strain, PM759. The mutants generated in this study will help determine the contribution of other beta-lactam resistance mechanisms in addition to serving as tools to study the biology of peptidoglycan biosynthesis in these organisms.
分枝杆菌可产生β-内酰胺酶,对β-内酰胺类抗生素具有内在抗性。除β-内酰胺酶外,细胞壁通透性以及某些肽聚糖生物合成酶的变异被认为也有助于这些生物体对β-内酰胺产生抗性。为了研究这些额外的机制,在致病性结核分枝杆菌菌株H37Rv和模式生物耻垢分枝杆菌菌株PM274中构建了主要β-内酰胺酶BlaC和BlaS的突变体。通过纸片扩散法和最低抑菌浓度(MIC)测定发现,结核分枝杆菌突变体PM638(DeltablaC1)和耻垢分枝杆菌突变体PM759(DeltablaS1)对β-内酰胺类抗生素的敏感性增加。与头孢菌素类β-内酰胺抗生素相比,通过纸片扩散试验测定,突变体对青霉素类β-内酰胺抗生素的敏感性受影响最大。结核分枝杆菌突变体未检测到β-内酰胺酶活性,而耻垢分枝杆菌突变体具有残余的1型β-内酰胺酶活性。我们在耻垢分枝杆菌中鉴定出一个编码假定头孢菌素酶的基因blaE。耻垢分枝杆菌的双β-内酰胺酶突变体PM976(DeltablaS1DeltablaE : : res)未检测到β-内酰胺酶活性,但其对β-内酰胺类抗生素的敏感性与DeltablaS1亲本菌株PM759相比无显著差异。本研究中构建的突变体将有助于确定除β-内酰胺抗性机制之外的其他机制的作用,同时还可作为研究这些生物体中肽聚糖生物合成生物学的工具。