Su Zhengchang, Dam Phuongan, Chen Xin, Olman Victor, Jiang Tao, Palenik Brian, Xu Ying
Department of Biochemistry and Molecular Biology, University of Georgia at Athens, and Computational Biology Institute, Oak Ridge National Laboratory.
Genome Inform. 2003;14:3-13.
We present a computational protocol for inference of regulatory and signaling pathways in a microbial cell, through literature search, mining "high-throughput'' biological data of various types, and computer-assisted human inference. This protocol consists of four key components: (a) construction of template pathways for microbial organisms related to the target genome, which either have been extensively studied and/or have a significant amount of (relevant) experimental data, (b) inference of initial pathway models for the target genome, through combining the template pathway models and target genome-specific information, (c) refinement and expansion of the initial pathway models through applications of various data mining tools, including phylogenetic profile analysis, inference of protein-protein interactions, and prediction of transcription factor binding sites, and (d) validation and refinement of the pathway models using pathway-specific experimental data or other information. To demonstrate the effectiveness of this procedure, we have applied it to the construction of the phosphorus assimilation pathways in cyanobacterium sp. WH8102. We present, in this paper, a model of the core components of this pathway.
我们提出了一种用于推断微生物细胞中调控和信号通路的计算协议,该协议通过文献检索、挖掘各种类型的“高通量”生物数据以及计算机辅助的人工推理来实现。该协议由四个关键部分组成:(a) 构建与目标基因组相关的微生物模板通路,这些微生物要么已被广泛研究,要么拥有大量(相关)实验数据;(b) 通过结合模板通路模型和目标基因组特定信息,推断目标基因组的初始通路模型;(c) 通过应用各种数据挖掘工具对初始通路模型进行细化和扩展,包括系统发育谱分析、蛋白质 - 蛋白质相互作用推断以及转录因子结合位点预测;(d) 使用通路特异性实验数据或其他信息对通路模型进行验证和细化。为了证明该过程的有效性,我们将其应用于构建蓝藻WH8102中的磷同化通路。在本文中,我们展示了该通路核心组件的模型。