Che Dongsheng, Li Guojun, Mao Fenglou, Wu Hongwei, Xu Ying
Department of Biochemistry and Molecular Biology, University of Georgia, USA.
Nucleic Acids Res. 2006 May 8;34(8):2418-27. doi: 10.1093/nar/gkl294. Print 2006.
We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: http://csbl.bmb.uga.edu/uber, the first of its kind.
我们展示了一项关于原核生物基因组中超级操纵子计算识别的研究,其中每个超级操纵子代表一组通过其他(参考)基因组中的操纵子在进化或功能上相关的操纵子。超级操纵子代表了操纵子进化的丰富足迹集,充分利用这些足迹可能会带来比操纵子所提供的更新颖、更强大的工具,用于阐明生物途径和网络,并更好地理解原核生物基因组结构和进化。我们的预测算法通过识别功能或转录相关的操纵子组来预测超级操纵子,这些操纵子组的基因集在目标基因组和多个参考基因组中是保守的。使用该算法,我们以其他90个基因组为参考,对91个基因组中的每一个都预测了超级操纵子。特别是,我们在大肠杆菌K12中预测了158个超级操纵子,涵盖1830个基因,并发现许多超级操纵子对应于已知调控子或生物途径的部分,或者根据其基因本体(GO)注释参与高度相关的生物过程。对于一些预测的不属于已知调控子或途径的超级操纵子,我们的分析表明它们的基因极有可能在相同的生物过程中协同工作,这暗示了新调控子和途径的可能性。我们相信,我们的超级操纵子预测为阐明复杂的生物过程(如微生物途径)提供了一项非常有用的能力和丰富的信息来源。所有预测结果可在我们的超级操纵子数据库获取:http://csbl.bmb.uga.edu/uber,这是同类中的第一个。