用于解决神经影像难题的脑电图(EEG)、脑磁图(MEG)和功能磁共振成像(fMRI)数据的多模态整合。
Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle.
作者信息
Babiloni Fabio, Mattia Donetella, Babiloni Claudio, Astolfi Laura, Salinari Serenella, Basilisco Alessandra, Rossini Paolo Maria, Marciani Maria Grazia, Cincotti Febo
机构信息
Department of Human Physiology and Pharmacology, University "La Sapienza", 00185 Rome, Italy.
出版信息
Magn Reson Imaging. 2004 Dec;22(10):1471-6. doi: 10.1016/j.mri.2004.10.007.
In this paper, advanced methods for the modeling of human cortical activity from combined high-resolution electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) data are presented. These methods include a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from magnetic resonance images, multidipole source model and regularized linear inverse source estimates of cortical current density. Determination of the priors in the resolution of the linear inverse problem was performed with the use of information from the hemodynamic responses of the cortical areas as revealed by block-designed (strength of activated voxels) fMRI. Examples of the application of these methods to the estimation of the time varying cortical current density activity in selected region of interest (ROI) are presented for movement-related high-resolution EEG data.
本文介绍了用于从高分辨率脑电图(EEG)、脑磁图(MEG)和功能磁共振成像(fMRI)数据联合建模人类皮质活动的先进方法。这些方法包括根据磁共振图像构建的受试者多隔室头部模型(头皮、颅骨、硬脑膜、皮质)、多偶极源模型以及皮质电流密度的正则化线性逆源估计。在解决线性逆问题时,利用块设计(激活体素强度)fMRI揭示的皮质区域血液动力学反应信息来确定先验。针对与运动相关的高分辨率EEG数据,展示了这些方法在选定感兴趣区域(ROI)中估计随时间变化的皮质电流密度活动的应用示例。