文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

各向异性脑白质电导率对 EEG/MEG 正、逆解的影响。一项高分辨率全头模拟研究。

Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.

机构信息

Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital Philosophenweg 3, 07743 Jena, Germany.

出版信息

Neuroimage. 2010 May 15;51(1):145-63. doi: 10.1016/j.neuroimage.2010.02.014. Epub 2010 Feb 13.


DOI:10.1016/j.neuroimage.2010.02.014
PMID:20156576
Abstract

To investigate the influence of anisotropic electrical conductivity in white matter on the forward and inverse solution in electroencephalography (EEG) and magnetoencephalography (MEG) numerical simulation studies were performed. A high-resolution (1 mm3 isotropic) finite element model of a human head was implemented to study the sensitivity of EEG and MEG source localization. In vivo information on the anisotropy was obtained from magnetic resonance diffusion tensor imaging and included into the model, whereas both a direct transformation and a direct transformation with volume normalization were used to obtain conductivity tensors. Additionally, fixed artificial anisotropy ratios were also used, while considering only the orientation information from DTI, to generate conductivity tensors. Analysis was performed using over 25,000 single dipolar sources covering the full neocortex. Major findings of the study include that EEG is more sensitive to anisotropic conductivities in white matter compared to MEG. Especially with the inverse analysis, we found that sources placed deep in sulci are located more laterally if anisotropic conductivity of white matter tissue is neglected. Overall, the single-source localization errors resulting from a neglect of anisotropy were found to be smaller compared to errors associated with other modeling errors, like misclassified tissue or the use of nonrealistic head models. In contrast to the small localization error we observed significant changes in magnitude and orientation. The latter is important since dipole orientation might be more important than absolute dipole localization in assigning, e.g., epileptic activity to the wall of the affected brain sulcal area. If high-resolution finite element models are used to perform source localization in EEG and MEG experiments and the quality of the measured data permits localization accuracy of 1 mm and below, the influence of anisotropic compartments has to be taken into account.

摘要

为了研究白质各向异性电导率对白质内脑电图(EEG)和脑磁图(MEG)数值模拟研究正、逆解的影响,进行了一系列数值模拟研究。本研究构建了一个高分辨率(1 立方毫米各向同性)的人体头部有限元模型,用于研究 EEG 和 MEG 源定位的灵敏度。通过磁共振扩散张量成像获得了各向异性的体内信息,并将其纳入模型中,分别采用直接转换和体积归一化的直接转换来获取电导率张量。此外,还考虑了仅从 DTI 中获取方向信息的固定人工各向异性比,以生成电导率张量。分析使用了超过 25000 个覆盖整个新皮层的单偶极子源。本研究的主要发现包括:与 MEG 相比,EEG 对白质各向异性电导率更为敏感。特别是在逆分析中,如果忽略白质组织的各向异性电导率,我们发现位于深沟内的源会被定位到更外侧。总体而言,与其他建模错误(例如组织分类错误或使用非现实的头部模型)相关的误差相比,忽略各向异性引起的单源定位误差较小。与较小的定位误差相反,我们观察到幅度和方向的显著变化。后者很重要,因为在将癫痫活动分配给受影响脑沟区域的壁时,偶极子的方向可能比绝对偶极子定位更为重要。如果使用高分辨率有限元模型在 EEG 和 MEG 实验中进行源定位,并且测量数据的质量允许定位精度达到 1 毫米及以下,则必须考虑各向异性的影响。

相似文献

[1]
Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.

Neuroimage. 2010-2-13

[2]
Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.

Neuroimage. 2006-4-15

[3]
Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.

Phys Med Biol. 2008-4-7

[4]
The influence of brain tissue anisotropy on human EEG and MEG.

Neuroimage. 2002-1

[5]
Influence of anisotropic conductivity on EEG source reconstruction: investigations in a rabbit model.

IEEE Trans Biomed Eng. 2006-9

[6]
Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models.

IEEE Trans Biomed Eng. 2004-12

[7]
Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis.

Phys Med Biol. 2009-9-24

[8]
Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.

Neuroimage. 2008-11-1

[9]
A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization.

Phys Med Biol. 2005-8-21

[10]
[Modeling the effect of the layer thickness and tissue conductivities of the head and the brain on the EEG potentials using finite element method].

Zh Vyssh Nerv Deiat Im I P Pavlova. 2007

引用本文的文献

[1]
The effect of brain tissue anisotropy on the electric field caused by transcranial electric stimulation: Sensitivity analysis and magnetic resonance electrical impedance tomography.

Imaging Neurosci (Camb). 2025-2-26

[2]
Directional sensitivity of cortical neurons towards TMS-induced electric fields.

Imaging Neurosci (Camb). 2023-12-4

[3]
Effects of high-definition tDCS targeting individual motor hotspot with EMG-driven robotic hand training on upper extremity motor function: a pilot randomized controlled trial.

J Neuroeng Rehabil. 2024-9-20

[4]
Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model.

bioRxiv. 2024-5-21

[5]
A hybrid boundary element-finite element approach for solving the EEG forward problem in brain modeling.

Front Syst Neurosci. 2024-5-3

[6]
A review of algorithms and software for real-time electric field modeling techniques for transcranial magnetic stimulation.

Biomed Eng Lett. 2024-3-29

[7]
Comparing the performance of beamformer algorithms in estimating orientations of neural sources.

iScience. 2024-2-6

[8]
Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.

Brain Stimul. 2023

[9]
A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields.

Brain Sci. 2023-7-29

[10]
On Modelling Electrical Conductivity of the Cerebral White Matter.

Adv Exp Med Biol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索