Gao Ningguo, Shang Jie, Lehrman Mark A
Department of Pharmacology, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA.
J Biol Chem. 2005 May 6;280(18):17901-9. doi: 10.1074/jbc.M500510200. Epub 2005 Feb 11.
Phosphomannomutase (PMM) deficiency causes congenital disorder of glycosylation (CDG)-Ia, a broad spectrum disorder with developmental and neurological abnormalities. PMM converts mannose 6-phosphate (M6P) to mannose-1-phosphate, a precursor of GDP-mannose used to make Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (lipid-linked oligosaccharide; LLO). LLO, in turn, is the donor substrate of oligosaccharyltransferase for protein N-linked glycosylation. Hepatically produced N-linked glycoproteins in CDG-Ia blood are hypoglycosylated. Upon labeling with [(3)H]mannose, CDG-Ia fibroblasts have been widely reported to accumulate [(3)H]LLO intermediates. Since these are thought to be poor oligosaccharyltransferase substrates, LLO intermediate accumulation has been the prevailing explanation for hypoglycosylation in patients. However, this is discordant with sporadic reports of specific glycoproteins (detected with antibodies) from CDG-Ia fibroblasts being fully glycosylated. Here, fluorophore-assisted carbohydrate electrophoresis (FACE, a nonradioactive technique) was used to analyze steady-state LLO compositions in CDG-Ia fibroblasts. FACE revealed that low glucose conditions accounted for previous observations of accumulated [(3)H]LLO intermediates. Additional FACE experiments demonstrated abundant Glc(3)Man(9)GlcNAc(2)-P-P-dolichol, without hypoglycosylation, CDG-Ia fibroblasts grown with physiological glucose. This suggested a "missing link" to explain hypoglycosylation in CDG-Ia patients. Because of the possibility of its accumulation, the effects of M6P on glycosylation were explored in vitro. Surprisingly, M6P was a specific activator for cleavage of Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This led to futile cycling the LLO pathway, exacerbated by GDP-mannose/PMM deficiency. The possibilities that M6P may accumulate in hepatocytes and that M6P-stimulated LLO cleavage may account for both hypoglycosylation and the clinical failure of dietary mannose therapy with CDG-Ia patients are discussed.
磷酸甘露糖变位酶(PMM)缺乏会导致先天性糖基化障碍(CDG)-Ia,这是一种具有发育和神经异常的广泛谱系疾病。PMM将6-磷酸甘露糖(M6P)转化为1-磷酸甘露糖,后者是用于合成Glc(3)Man(9)GlcNAc(2)-P-P-多萜醇(脂连接寡糖;LLO)的GDP-甘露糖的前体。LLO反过来又是寡糖基转移酶用于蛋白质N-连接糖基化的供体底物。CDG-Ia患者血液中肝脏产生的N-连接糖蛋白糖基化不足。在用[(3)H]甘露糖标记后,CDG-Ia成纤维细胞被广泛报道会积累[(3)H]LLO中间体。由于这些中间体被认为是寡糖基转移酶的不良底物,LLO中间体的积累一直是患者糖基化不足的主要解释。然而,这与来自CDG-Ia成纤维细胞的特定糖蛋白(用抗体检测)完全糖基化的零星报道不一致。在这里,荧光团辅助碳水化合物电泳(FACE,一种非放射性技术)被用于分析CDG-Ia成纤维细胞中的稳态LLO组成。FACE显示,低葡萄糖条件解释了先前观察到的[(3)H]LLO中间体积累的现象。额外的FACE实验表明,在生理葡萄糖条件下生长的CDG-Ia成纤维细胞中存在大量的Glc(3)Man(9)GlcNAc(2)-P-P-多萜醇,且没有糖基化不足的情况。这提示了一个解释CDG-Ia患者糖基化不足的“缺失环节”。由于M6P可能积累,因此在体外探索了M6P对糖基化的影响。令人惊讶的是,M6P是Glc(3)Man(9)GlcNAc(2)-P-P-多萜醇裂解的特异性激活剂。这导致LLO途径的无效循环,而GDP-甘露糖/PMM缺乏会加剧这种情况。本文讨论了M6P可能在肝细胞中积累以及M6P刺激的LLO裂解可能解释CDG-Ia患者糖基化不足和饮食甘露糖治疗临床失败的可能性。