Gillardon Frank, Steinlein Peter, Bürger Erich, Hildebrandt Tobias, Gerner Christopher
Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research, Biberach an der Riss, Germany.
Proteomics. 2005 Apr;5(5):1299-307. doi: 10.1002/pmic.200400992.
In Alzheimer's disease and amyotrophic lateral sclerosis deregulation of cyclin-dependent kinase 5 (CDK5) causes hyperphosphorylation of tau and neurofilament proteins, respectively, leading to neuronal cell death. We have demonstrated recently that pharmacological inhibition of CDK5 protects neurons under various stressful conditions (Weishaupt J. H., et al., Molec. Cell. Neurosci. 2003, 24, 489-502). To get an overview on the cellular mechanisms of action we analyzed global changes in protein phosphorylation in cultured cerebellar granule neurons by [(32)P]orthophosphate labeling after administration of a CDK5 inhibitor. Since CDK5 has recently been shown to phosphorylate and inactivate transcription factor MEF2, we included gene expression profiling using cDNA microarrays. By two-dimensional gel electrophoresis and matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF)-mass spectrometry we identified several phosphoproteins that were modulated by compound administration. Among them syndapin I which is involved in vesicle recycling, and dynein light intermediate chain 2 which represents a regulatory subunit of the dynein protein complex. These findings are consistent with the known physiological function of CDK5 in synaptic signaling and axonal transport. Moreover, we detected phosphoproteins acting in neuronal surival and/or neurite outgrowth, such as cofilin and collapsin response mediator protein. Subsequent testing in cell cultures revealed that the CDK5 inhibitor blocked mitochondrial translocation of pro-apoptotic cofilin in cerebellar granule neurons and enhanced neurite outgrowth in dorsal root ganglia. Numerous genes exhibiting MEF2 consensus binding sequences were modulated by CDK5 inhibitor treatment. Among them some that may contribute to neurite elongation or neuronal survival, but also several genes functioning in synaptic transmission. Taken together, phosphoproteome and transcriptome analysis indicate that the compound promotes both neuronal survival and neurite outgrowth, but also may affect synaptic function in cultured neurons.
在阿尔茨海默病和肌萎缩侧索硬化症中,细胞周期蛋白依赖性激酶5(CDK5)失调分别导致tau蛋白和神经丝蛋白的过度磷酸化,进而导致神经元细胞死亡。我们最近证明,在各种应激条件下,CDK5的药理抑制作用可保护神经元(Weishaupt J. H.等人,《分子与细胞神经科学》,2003年,第24卷,第489 - 502页)。为了全面了解其细胞作用机制,我们在给予CDK5抑制剂后,通过[(32)P]正磷酸盐标记分析了培养的小脑颗粒神经元中蛋白质磷酸化的整体变化。由于最近发现CDK5可磷酸化并使转录因子MEF2失活,我们还进行了使用cDNA微阵列的基因表达谱分析。通过二维凝胶电泳和基质辅助激光解吸/电离飞行时间(MALDI - TOF)质谱,我们鉴定了几种受化合物给药调节的磷酸化蛋白。其中包括参与囊泡循环的syndapin I和作为动力蛋白复合物调节亚基的动力蛋白轻中间链2。这些发现与CDK5在突触信号传导和轴突运输中的已知生理功能一致。此外,我们检测到了在神经元存活和/或神经突生长中起作用的磷酸化蛋白,如丝切蛋白和塌陷反应介导蛋白。随后在细胞培养中的测试表明,CDK5抑制剂可阻断小脑颗粒神经元中促凋亡丝切蛋白的线粒体易位,并增强背根神经节中的神经突生长。许多具有MEF2共有结合序列的基因受到CDK5抑制剂处理的调节。其中一些基因可能有助于神经突伸长或神经元存活,还有几个基因在突触传递中发挥作用。综上所述,磷酸化蛋白质组和转录组分析表明,该化合物不仅促进神经元存活和神经突生长,还可能影响培养神经元中的突触功能。