Kikuchi Hidehiko, Takami Yasunari, Nakayama Tatsuo
Department of Life Science, Frontier Science Research Center, Miyazaki Medical College, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan.
Gene. 2005 Feb 28;347(1):83-97. doi: 10.1016/j.gene.2004.12.007.
Histone acetyltransferases (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. To clarify participatory in vivo roles of two such enzymes known as GCN5 and PCAF, we generated homozygous DT40 mutants, DeltaGCN5 and DeltaPCAF, devoid of two alleles of each of the GCN5 and PCAF genes, respectively, with the help of gene targeting technique. While the PCAF-deficiency exhibited no effect on growth rate, the GCN5-deficiency caused delayed growth rate of DT40 cells. FACS analyses revealed not only that the number of cells in S phase decreased, but also that the cell cycle progression was suppressed at G1/S phase transition for DeltaGCN5. RT-PCR analyses revealed that the GCN5-deficiency exhibited opposite influences on transcriptions of G1/S phase transition-related genes, i.e. repressions for E2F-1, E2F-3, E2F-4, E2F-6, DP-2, cyclin A, cyclin D3, PCNA, cdc25B and p107; and activations for p27, c-myc, cyclin D2 and cyclin G1. Similarly, the deficiency influenced oppositely transcriptions of apoptosis-related genes, i.e. decreased expression of bcl-xL and increased expression of bcl-2. Immunoblotting analyses using a number of anti-acetylated histone antisera revealed that the GCN5-deficiency led to decreased acetylation levels of K16/H2B and K9/H3, and increased those of K7/H2A, K18/H3, K23/H3, K27/H3, K8/H4 and K12/H4. These results indicate that GCN5 preferentially acts as a supervisor in the normal cell cycle progression having comprehensive control over expressions of these cell cycle-related genes, as well as apoptosis-related genes, probably via alterations in the chromatin structure, mimicked by changing acetylation status of core histones, surrounding these widely distributed genes.
组蛋白乙酰转移酶(HATs)参与核心组蛋白的乙酰化过程,这是真核生物中通过染色质结构改变进行转录调控的重要事件。为了阐明两种这样的酶,即GCN5和PCAF在体内的参与作用,我们借助基因靶向技术,分别构建了纯合的DT40突变体DeltaGCN5和DeltaPCAF,它们分别缺失GCN5和PCAF基因的两个等位基因。虽然PCAF缺陷对生长速率没有影响,但GCN5缺陷导致DT40细胞生长速率延迟。流式细胞术分析表明,不仅S期细胞数量减少,而且DeltaGCN5在G1/S期转换时细胞周期进程受到抑制。逆转录-聚合酶链反应(RT-PCR)分析表明,GCN5缺陷对G1/S期转换相关基因的转录有相反的影响,即对E2F-1、E2F-3、E2F-4、E2F-6、DP-2、细胞周期蛋白A、细胞周期蛋白D3、增殖细胞核抗原(PCNA)、细胞周期蛋白依赖性激酶25B(cdc25B)和p107有抑制作用;对p27、c-myc、细胞周期蛋白D2和细胞周期蛋白G1有激活作用。同样,该缺陷对凋亡相关基因的转录也有相反的影响,即bcl-xL表达降低,bcl-2表达增加。使用多种抗乙酰化组蛋白抗血清的免疫印迹分析表明,GCN5缺陷导致K16/H2B和K9/H3的乙酰化水平降低,而K7/H2A、K18/H3、K23/H3、K27/H3、K8/H4和K12/H4的乙酰化水平升高。这些结果表明,GCN5可能通过改变核心组蛋白的乙酰化状态,模拟染色质结构的变化,对这些广泛分布的基因周围的染色质结构进行改变,从而优先作为正常细胞周期进程的监督者,全面控制这些细胞周期相关基因以及凋亡相关基因的表达。