Suppr超能文献

通过注量/正弦图修正进行运动编码剂量计算。

Motion-encoded dose calculation through fluence/sinogram modification.

作者信息

Lu Weiguo, Olivera Gustavo H, Mackie Thomas R

机构信息

TomoTherapy Inc, Madison, Wisconsin 53717, USA.

出版信息

Med Phys. 2005 Jan;32(1):118-27. doi: 10.1118/1.1829402.

Abstract

Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the "dose-convolution" method because it is not based on "shift invariant" assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the "dose-convolution" and the "stochastic simulation" methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the "dose-convolution" method. As for all other phantoms, our method outperforms the "dose-convolution." The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on "motion-encoded dose calculation" can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose.

摘要

传统的放射治疗治疗计划系统依靠静态计算机断层扫描(CT)图像进行计划制定和评估。分次内/分次间患者的运动可能会导致计划剂量与实际 delivered 剂量之间存在显著差异。在本文中,我们开发了一种方法,可将分次内/分次间患者运动的相关知识直接纳入剂量计算中。通过将运动分解为平行(与射束方向)分量和垂直(与射束方向)分量,我们表明,只需修改注量分布(正弦图),就能考虑运动的影响。经过这样的修改后,剂量计算与基于静态计划图像的计算相同。该方法优于“剂量卷积”方法,因为它不基于“平移不变性”假设。因此,它能很好地处理材料不均匀性和表面曲率问题。我们使用大量模拟对我们的方法进行了测试,这些模拟包括四个体模、四种运动模式和三个计划射束。我们将我们的方法与“剂量卷积”方法和“随机模拟”方法(金标准)进行了比较。对于均匀平面体模,我们的方法与“剂量卷积”方法具有相似的精度。对于所有其他体模,我们的方法优于“剂量卷积”方法。使用我们的方法进行的最大运动编码剂量计算误差在金标准的4%以内。结果表明,基于“运动编码剂量计算”的治疗计划系统能够以非常简单的方式纳入随机和系统运动误差。在这种近似情况下,原则上不需要定义计划靶区,因为它已经考虑了分次内/分次间的运动变化,并且会自动优化累积剂量而非单次分割剂量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验