Suppr超能文献

肺部调强放射治疗患者剂量计算的准确性:蒙特卡罗法、卷积/叠加法和笔形束算法的比较

Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.

作者信息

Vanderstraeten Barbara, Reynaert Nick, Paelinck Leen, Madani Indira, De Wagter Carlos, De Gersem Werner, De Neve Wilfried, Thierens Hubert

机构信息

Department of Medical Physics, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium.

出版信息

Med Phys. 2006 Sep;33(9):3149-58. doi: 10.1118/1.2241992.

Abstract

The accuracy of dose computation within the lungs depends strongly on the performance of the calculation algorithm in regions of electronic disequilibrium that arise near tissue inhomogeneities with large density variations. There is a lack of data evaluating the performance of highly developed analytical dose calculation algorithms compared to Monte Carlo computations in a clinical setting. We compared full Monte Carlo calculations (performed by our Monte Carlo dose engine MCDE) with two different commercial convolution/superposition (CS) implementations (Pinnacle-CS and Helax-TMS's collapsed cone model Helax-CC) and one pencil beam algorithm (Helax-TMS's pencil beam model Helax-PB) for 10 intensity modulated radiation therapy (IMRT) lung cancer patients. Treatment plans were created for two photon beam qualities (6 and 18 MV). For each dose calculation algorithm, patient, and beam quality, the following set of clinically relevant dose-volume values was reported: (i) minimal, median, and maximal dose (Dmin, D50, and Dmax) for the gross tumor and planning target volumes (GTV and PTV); (ii) the volume of the lungs (excluding the GTV) receiving at least 20 and 30 Gy (V20 and V30) and the mean lung dose; (iii) the 33rd percentile dose (D33) and Dmax delivered to the heart and the expanded esophagus; and (iv) Dmax for the expanded spinal cord. Statistical analysis was performed by means of one-way analysis of variance for repeated measurements and Tukey pairwise comparison of means. Pinnacle-CS showed an excellent agreement with MCDE within the target structures, whereas the best correspondence for the organs at risk (OARs) was found between Helax-CC and MCDE. Results from Helax-PB were unsatisfying for both targets and OARs. Additionally, individual patient results were analyzed. Within the target structures, deviations above 5% were found in one patient for the comparison of MCDE and Helax-CC, while all differences between MCDE and Pinnacle-CS were below 5%. For both Pinnacle-CS and Helax-CC, deviations from MCDE above 5% were found within the OARs: within the lungs for two (6 MV) and six (18 MV) patients for Pinnacle-CS, and within other OARs for two patients for Helax-CC (for Dmax of the heart and D33 of the expanded esophagus) but only for 6 MV. For one patient, all four algorithms were used to recompute the dose after replacing all computed tomography voxels within the patient's skin contour by water. This made all differences above 5% between MCDE and the other dose calculation algorithms disappear. Thus, the observed deviations mainly arose from differences in particle transport modeling within the lungs, and the commissioning of the algorithms was adequately performed (or the commissioning was less important for this type of treatment). In conclusion, not one pair of the dose calculation algorithms we investigated could provide results that were consistent within 5% for all 10 patients for the set of clinically relevant dose-volume indices studied. As the results from both CS algorithms differed significantly, care should be taken when evaluating treatment plans as the choice of dose calculation algorithm may influence clinical results. Full Monte Carlo provides a great benchmarking tool for evaluating the performance of other algorithms for patient dose computations.

摘要

肺部剂量计算的准确性在很大程度上取决于计算算法在电子不平衡区域的性能,这种不平衡出现在密度变化大的组织不均匀性附近。与蒙特卡罗计算相比,在临床环境中缺乏评估高度发达的解析剂量计算算法性能的数据。我们将全蒙特卡罗计算(由我们的蒙特卡罗剂量引擎MCDE执行)与两种不同的商业卷积/叠加(CS)实现方式(Pinnacle-CS和Helax-TMS的坍缩圆锥模型Helax-CC)以及一种笔形束算法(Helax-TMS的笔形束模型Helax-PB)用于10例调强放射治疗(IMRT)肺癌患者。针对两种光子束能量(6和18 MV)制定了治疗计划。对于每种剂量计算算法、患者和束能量,报告了以下一组临床相关的剂量体积值:(i)大体肿瘤和计划靶体积(GTV和PTV)的最小、中位和最大剂量(Dmin、D50和Dmax);(ii)接受至少20和30 Gy(V20和V30)的肺体积(不包括GTV)以及平均肺剂量;(iii)输送到心脏和扩展食管的第33百分位数剂量(D33)和Dmax;以及(iv)扩展脊髓的Dmax。通过重复测量的单向方差分析和均值的Tukey成对比较进行统计分析。Pinnacle-CS在靶结构内与MCDE显示出极好的一致性,而在危及器官(OARs)方面,Helax-CC与MCDE之间的对应性最佳。Helax-PB对于靶区和OARs的结果都不令人满意。此外,还分析了个体患者的结果。在靶结构内,在一名患者中发现MCDE与Helax-CC比较时偏差超过5%,而MCDE与Pinnacle-CS之间的所有差异均低于5%。对于Pinnacle-CS和Helax-CC,在OARs内发现与MCDE的偏差超过5%:对于Pinnacle-CS,在两名(6 MV)和六名(18 MV)患者的肺内,对于Helax-CC,在两名患者的其他OARs内(对于心脏的Dmax和扩展食管的D33),但仅在6 MV时。对于一名患者,在将患者皮肤轮廓内的所有计算机断层扫描体素替换为水后,使用所有四种算法重新计算剂量。这使得MCDE与其他剂量计算算法之间所有超过5%的差异消失。因此,观察到的偏差主要源于肺内粒子传输建模的差异,并且算法的调试执行得当(或者对于这种类型的治疗,调试不太重要)。总之,对于我们研究的一组临床相关剂量体积指标,我们研究的剂量计算算法中没有一对能为所有10名患者提供在5%以内一致的结果。由于两种CS算法的结果差异显著,在评估治疗计划时应谨慎,因为剂量计算算法的选择可能会影响临床结果。全蒙特卡罗为评估其他患者剂量计算算法的性能提供了一个很好的基准工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验