Shiraishi Fumihide, Hatoh Yuji, Irie Toshinori
Department of Biochemical Systems Engineering, Faculty of Computer Science and Engineering, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka 820-8502, Japan.
J Theor Biol. 2005 May 7;234(1):79-85. doi: 10.1016/j.jtbi.2004.11.015. Epub 2004 Dec 28.
Biochemical systems theory (BST) characterizes a given biochemical system based on the logarithmic gains, rate-constant sensitivities and kinetic-order sensitivities defined at a steady state. This paper describes an efficient method for calculation of the time courses of logarithmic gains, i.e. dynamic logarithmic gains L(Xi, Xj; t), which expresses the percentage change in the value of a dependent variable Xi at a time t in response to an infinitesimal percentage change in the value of an independent variable Xj at t=0. In this method, one first recasts the ordinary differential equations for the dependent variables into an exact canonical nonlinear representation (GMA system) through appropriate transformations of variables. Owing to the structured mathematical form of this representation, the recast system can be fully described by a set of numeric parameters, and the differential equations for the dynamic logarithmic gains can be set up automatically without resource to computer algebra. A simple general-purpose computer program can thus be written that requires only the relevant numeric parameters as input to calculate the time courses of the variables and of the dynamic logarithmic gains for both concentrations and fluxes. Unlike other methods, the proposed method does not require to derive any expression for the partial differentiation of flux expressions with respect to each independent variable. The proposed method has been applied to two kinds of reaction models to elucidate its usefulness.
生化系统理论(BST)基于在稳态下定义的对数增益、速率常数敏感性和动力学阶数敏感性来表征给定的生化系统。本文描述了一种计算对数增益时间进程的有效方法,即动态对数增益L(Xi, Xj; t),它表示在时间t时,因变量Xi的值相对于在t = 0时自变量Xj的值发生无穷小百分比变化时的百分比变化。在该方法中,首先通过对变量进行适当变换,将因变量的常微分方程重铸为精确的规范非线性表示(GMA系统)。由于这种表示的结构化数学形式,重铸后的系统可以由一组数值参数完全描述,并且无需借助计算机代数就可以自动建立动态对数增益的微分方程。因此,可以编写一个简单的通用计算机程序,该程序仅需要相关数值参数作为输入,即可计算变量以及浓度和通量的动态对数增益的时间进程。与其他方法不同,所提出的方法不需要推导通量表达式相对于每个自变量的偏导数的任何表达式。所提出的方法已应用于两种反应模型以阐明其有用性。