Jouny Christophe C, Franaszczuk Piotr J, Bergey Gregory K
Johns Hopkins Epilepsy Center, Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
Clin Neurophysiol. 2005 Mar;116(3):552-8. doi: 10.1016/j.clinph.2004.08.024. Epub 2005 Jan 5.
Epileptic seizures are characterized by increases in synchronized activity and increased signal complexity. Prediction of seizures depends upon detectable preictal changes before the actual ictal event. The studies reported here test whether two methods designed to detect changes in synchrony and complexity can identify any changes in a preictal period before visual EEG changes or clinical manifestations.
Two methods are used to characterize different, but linked, properties of the signal-complexity and synchrony. The Gabor atom density (GAD) method allows for quantification of the time-frequency components of the EEG and characterizes the complexity of the EEG signal. The measure S, based on the goodness of fit of a multivariable autoregressive model, allows for characterization of the degree of synchrony of the EEG signal.
Complex partial seizures produce very specific patterns of increased signal complexity and subsequent postictal low complexity states. The measure S shows increased synchronization later including a prolonged period of increased synchrony in the postictal period. No significant preictal changes were seen unless contaminated by residual postictal changes in closely clustered seizures.
Both GAD and S measures reveal ictal and prolonged postictal changes; however, there were no significant preictal changes in either complexity or synchrony. Any application of methods to detect preictal changes must be tested on seizures sufficiently separated to avoid residual postictal changes in the potential preictal period.
癫痫发作的特征是同步活动增加和信号复杂性增加。癫痫发作的预测取决于在实际发作事件之前可检测到的发作前期变化。本文报道的研究测试了两种旨在检测同步性和复杂性变化的方法是否能在脑电图(EEG)视觉变化或临床表现出现之前,识别出发作前期的任何变化。
使用两种方法来表征信号的不同但相关的特性——复杂性和同步性。加博尔原子密度(GAD)方法可对脑电图的时频成分进行量化,并表征脑电图信号的复杂性。基于多变量自回归模型拟合优度的S测量值可表征脑电图信号的同步程度。
复杂部分性发作会产生非常特定的信号复杂性增加模式以及随后的发作后低复杂性状态。S测量值显示后期同步性增加,包括发作后期同步性增加的持续时间延长。除非在紧密聚集的发作中受到残留发作后变化的影响,否则未观察到明显的发作前期变化。
GAD和S测量值均揭示了发作期和延长的发作后期变化;然而,在复杂性或同步性方面均未观察到明显的发作前期变化。任何检测发作前期变化的方法应用都必须在充分分离的发作上进行测试,以避免在潜在的发作前期出现残留发作后变化。