Faculty of Physics, University of Warsaw, ul, Hoża 69, 00-681 Warszawa, Poland.
Biomed Eng Online. 2013 Sep 23;12:94. doi: 10.1186/1475-925X-12-94.
Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG.
We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation.
Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications.
Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.
匹配追踪算法(MP),尤其是最近的多变量扩展,在 EEG 和 MEG 的分析中具有独特的优势。
我们提出了一种新的最优 Gabor 字典的构建方法,该方法基于本文中引入的度量标准。我们在一个免费的用于多变量时间序列 MP 分解的软件中实现了这种构建,该软件具有通过 Svarog 包(Signal Viewer,Analyzer and Recorder On GPL,http://braintech.pl/svarog)提供的用户友好界面,并提供了一个应用于 EEG 的实际介绍。最后,我们描述了在这种实现中使用的数值和数学优化。
基于本文中引入的度量标准的最优 Gabor 字典,首次允许对 MP 算法的最大一步误差进行先验评估。在随附软件中实现的多变量 MP 变体,根据算法的数学性质进行组织,这些性质在 EEG/MEG 分析中是相关的。这些变体中的一些已经在之前的研究中成功地应用于多通道和多试验 EEG 和 MEG,改善了 EEG/MEG 逆解的预处理和单试诱发电位的参数化;我们还提到了正在进行的工作和可能的新应用。
本文提出的数学结果提高了我们对 MP 算法基础的理解。其性质和优势的简单介绍,以及附带的稳定且用户友好的开源软件包,为多变量 EEG 和 MEG 时间序列的广泛和可重复分析以及新的应用铺平了道路,同时保持了与 EEG 传统的视觉分析的高度兼容性。