论癫痫发作的可预测性。

On the predictability of epileptic seizures.

作者信息

Mormann Florian, Kreuz Thomas, Rieke Christoph, Andrzejak Ralph G, Kraskov Alexander, David Peter, Elger Christian E, Lehnertz Klaus

机构信息

Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.

出版信息

Clin Neurophysiol. 2005 Mar;116(3):569-87. doi: 10.1016/j.clinph.2004.08.025. Epub 2005 Jan 6.

Abstract

OBJECTIVE

An important issue in epileptology is the question whether information extracted from the EEG of epilepsy patients can be used for the prediction of seizures. Several studies have claimed evidence for the existence of a pre-seizure state that can be detected using different characterizing measures. In this paper, we evaluate the predictability of seizures by comparing the predictive performance of a variety of univariate and bivariate measures comprising both linear and non-linear approaches.

METHODS

We compared 30 measures in terms of their ability to distinguish between the interictal period and the pre-seizure period. After completely analyzing continuous inctracranial multi-channel recordings from five patients lasting over days, we used ROC curves to distinguish between the amplitude distributions of interictal and preictal time profiles calculated for the respective measures. We compared different evaluation schemes including channelwise and seizurewise analysis plus constant and adaptive reference levels. Particular emphasis was placed on statistical validity and significance.

RESULTS

Univariate measures showed statistically significant performance only in a channelwise, seizurewise analysis using an adaptive baseline. Preictal changes for these measures occurred 5-30 min before seizures. Bivariate measures exhibited high performance values reaching statistical significance for a channelwise analysis using a constant baseline. Preictal changes were found at least 240 min before seizures. Linear measures were found to perform similar or better than non-linear measures.

CONCLUSIONS

Results provide statistically significant evidence for the existence of a preictal state. Based on our findings, the most promising approach for prospective seizure anticipation could be a combination of bivariate and univariate measures.

SIGNIFICANCE

Many measures reported capable of seizure prediction in earlier studies are found to be insignificant in performance, which underlines the need for statistical validation in this field.

摘要

目的

癫痫学中的一个重要问题是,从癫痫患者脑电图中提取的信息是否可用于癫痫发作的预测。多项研究声称有证据表明存在可通过不同特征测量方法检测到的发作前状态。在本文中,我们通过比较包括线性和非线性方法在内的各种单变量和双变量测量方法的预测性能,来评估癫痫发作的可预测性。

方法

我们比较了30种测量方法区分发作间期和发作前期的能力。在对5名患者持续数天的连续颅内多通道记录进行全面分析后,我们使用ROC曲线来区分根据各自测量方法计算出的发作间期和发作前期时间曲线的幅度分布。我们比较了不同的评估方案,包括逐通道和逐发作分析以及固定和自适应参考水平。特别强调了统计有效性和显著性。

结果

单变量测量方法仅在使用自适应基线的逐通道、逐发作分析中表现出统计学上的显著性能。这些测量方法的发作前变化发生在癫痫发作前5 - 30分钟。双变量测量方法在使用固定基线的逐通道分析中表现出高性能值并达到统计显著性。在癫痫发作前至少240分钟发现发作前变化。发现线性测量方法的性能与非线性测量方法相似或更好。

结论

结果为发作前状态的存在提供了具有统计学意义的证据。根据我们的研究结果,前瞻性癫痫发作预测最有前景的方法可能是双变量和单变量测量方法的结合。

意义

许多早期研究中报道的能够进行癫痫发作预测的测量方法在性能上被发现不显著,这突出了该领域进行统计验证的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索