Suppr超能文献

捕捉术中变形:布莱根妇女医院的研究经验。

Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

作者信息

Warfield Simon K, Haker Steven J, Talos Ion-Florin, Kemper Corey A, Weisenfeld Neil, Mewes Andrea U J, Goldberg-Zimring Daniel, Zou Kelly H, Westin Carl-Fredrik, Wells William M, Tempany Clare M C, Golby Alexandra, Black Peter M, Jolesz Ferenc A, Kikinis Ron

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.

出版信息

Med Image Anal. 2005 Apr;9(2):145-62. doi: 10.1016/j.media.2004.11.005. Epub 2004 Dec 30.

Abstract

During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.

摘要

在神经外科手术过程中,神经外科医生的目标是在尽可能保留健康脑组织的同时,切除尽可能多的病变组织。在过去十年中,传统手术室使外科医生可视化关键健康脑结构和肿瘤边缘的能力有限,导致了先进的术中成像技术的发展,以增强可视化效果。然而,由于患者体位导致的刚体运动以及手术干预引起的非刚体变形,破坏了用于手术规划的术前数据与患者脑内术中配置之间的对应关系。在其他介入治疗中也面临类似挑战,例如肝脏冷冻消融或前列腺活检。我们已经开发了对关键解剖结构运动进行建模的算法和系统实现,使我们能够从体积图像序列估计关键解剖结构的变形,并以与手术决策兼容的速率准备术前和术中图像的更新融合可视化。本文回顾了布莱根妇女医院在开发和应用用于捕捉术中变形以支持图像引导治疗的新算法过程中的经验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验