用于捕捉术中磁共振成像引起的脑移位的稳健非刚性配准。

Robust nonrigid registration to capture brain shift from intraoperative MRI.

作者信息

Clatz Olivier, Delingette Hervé, Talos Ion-Florin, Golby Alexandra J, Kikinis Ron, Jolesz Ferenc A, Ayache Nicholas, Warfield Simon K

机构信息

Epidaure Research Project, INRIA Sophia Antipolis, 06902 Sophia Antipolis Cedex, France.

出版信息

IEEE Trans Med Imaging. 2005 Nov;24(11):1417-27. doi: 10.1109/TMI.2005.856734.

Abstract

We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.

摘要

我们提出了一种新算法,用于将三维术前磁共振(MR)图像与已经发生脑移位的术中脑MR图像进行配准。该算法依赖于从一组稀疏且有噪声的测量位移中对变形进行稳健估计。我们提出了一个新框架,用于在迭代过程中计算位移场,使解决方案能够从近似公式(最小化正则化项和数据误差项的总和)逐步过渡到插值公式(数据误差项的最小二乘最小化)。在这个渐进配准过程中,使用加权最小截尾二乘法引入了异常值剔除步骤,旨在提高算法的稳健性。我们使用有限元方法离散化的患者特异性模型,以确保脑组织具有逼真的力学行为。为了满足临床时间限制,我们对算法中最慢的步骤进行了并行化处理,以便能够在由15台个人计算机组成的异构集群上,在35秒内(包括图像更新时间)完成完整的三维图像配准。该算法已在6例脑肿瘤切除病例上进行了测试,这些病例的脑移位高达14毫米。结果表明,该算法具有良好的恢复大位移的能力,并且在肿瘤切除腔附近精度的下降有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索