Flaugh Shannon L, Kosinski-Collins Melissa S, King Jonathan
Department of Biology, Massachusetts Institute of Technology, Building 68, Room 330, 31 Ames Street, Cambridge, MA 02139, USA.
Protein Sci. 2005 Mar;14(3):569-81. doi: 10.1110/ps.041111405.
Human gammaD-crystallin (HgammaD-Crys) is a monomeric eye lens protein composed of two highly homologous beta-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type HgammaD-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus.
人γD-晶状体蛋白(HγD-Crys)是一种单体晶状体蛋白,由两个高度同源的β-折叠结构域组成。这些结构域通过结构域间的侧链接触相互作用,形成两个结构上不同的区域,一个中央疏水簇和周边残基。疏水簇包含来自N端结构域(N-td)的Met43、Phe56和Ile81,以及来自C端结构域(C-td)的Val132、Leu145和Val170。野生型HγD-Crys在盐酸胍(GuHCl)中的平衡去折叠/重折叠最适合三态模型,转变中点为2.2和2.8 M GuHCl。这两个转变可能对应于N-td和C-td的顺序去折叠/重折叠。先前的动力学实验表明,C-td的重折叠比N-td更快。我们构建了疏水界面残基的丙氨酸替代物,以分析它们在折叠和稳定性中的作用。从大肠杆菌中纯化后,所有突变蛋白都采用了类似于野生型的天然样结构。突变体F56A、I81A、V132A和L145A的N-td不稳定,导致单折叠结构域中间体的比例增加。与野生型相比,这些突变体N-td的有效重折叠速率也降低了,但C-td没有。这些数据表明了一种重折叠途径,其中重折叠的C-td的结构域界面残基作为N-td重折叠的成核中心。结构域界面相互作用的特异性可能对于防止晶状体核高蛋白浓度下的错误缔合很重要。