Lee Thomas Ming-Hung, Cai Hong, Hsing I-Ming
Department of Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Analyst. 2005 Mar;130(3):364-9. doi: 10.1039/b413143f. Epub 2005 Jan 13.
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.
在本文中,我们报道了各种金纳米颗粒对基于铟锡氧化物(ITO)电极上银电沉积的催化作用,并成功地将这种方法应用于杂交检测的信号放大。最广泛使用的基于金纳米颗粒的杂交指示剂都能促进裸ITO电极上的银电沉积,其催化能力按10 nm金、DNA探针 - 10 nm金共轭物、链霉亲和素 - 5 nm金和链霉亲和素 - 10 nm金的顺序降低。更重要的是,这些电催化特性会受到电极表面任何表面修饰的影响。这通过用导电聚合物聚(2 - 氨基苯甲酸)(PABA)以及抗生物素蛋白分子涂覆ITO来说明,它们是DNA生物传感器很有前景的固定平台。金纳米颗粒在PABA涂覆的ITO表面上的催化银电沉积类似于在裸表面上的情况。当抗生物素蛋白与PABA共价结合时,值得注意的是,不同类型的金纳米颗粒的电催化性能变化不同。对于链霉亲和素 - 5 nm金,银电沉积曲线不受抗生物素蛋白层存在的影响,而对于10 nm金和DNA探针 - 10 nm金共轭物,沉积曲线都受到抑制。链霉亲和素 - 5 nm金用作杂交指示剂,以抗生物素蛋白修饰(通过PABA)的ITO电极为固定平台,通过银电沉积过程实现信号放大。在这些条件下,这种检测策略的信噪比为20。我们相信,该方案在临床诊断和环境监测应用中的完全集成微器件上进行简单、可重复、高选择性和灵敏的DNA检测方面具有巨大潜力。