Departamento Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
Biosens Bioelectron. 2009 Dec 15;25(4):778-83. doi: 10.1016/j.bios.2009.08.028. Epub 2009 Aug 26.
Here, we describe a proof of concept procedure for the selective immobilization of oligonucleotides functionalized gold nanoparticle probes (affinity modules) on arrayed screen-printed gold electrodes. Current microarrays are using many different ways to address their DNA probes onto the transducer area. For that reason, we have mixed the electrodeposition of metals, which is a very well known process, in addition with the DNA-gold nanoparticles formation, which is an area of great interest in biosensing applications in the field of genomics, clinical and warfare applications. Combining these fields, we have developed a novel method for the immobilization of gold nanoparticles conjugated with oligonucleotides (affinity modules) onto screenprinting gold electrodes through electrodeposition at a current positive potential of 800mV vs. Ag/AgCl. The modules were selectively immobilized onto the electrode surface being, afterwards, ready for a successful hybridization. The gold colloids take the advantage of being a carrier that allows the immobilization of any kind of bioreceptor in the same conditions and the capability of quality control analysis before the electrodeposition procedure. With this system, we avoided non-specific interactions between the transduction layer and the bioreceptor and in the case of DNA oligonucleotides allowed us the immobilization of multiple sequences in a multimodular device for a further industrial process of cheaper biochip fabrication.
在这里,我们描述了一种概念验证程序,用于将功能化金纳米粒子探针(亲和模块)选择性固定在阵列式丝网印刷金电极上。目前的微阵列使用许多不同的方法将其 DNA 探针寻址到换能器区域。因此,我们将金属电沉积(这是一种非常成熟的工艺)与 DNA-金纳米粒子形成相结合,这是基因组学、临床和战争应用领域生物传感应用中的一个热点领域。通过将这些领域结合起来,我们开发了一种将与寡核苷酸(亲和模块)结合的金纳米粒子固定在丝网印刷金电极上的新方法,方法是在 800mV vs. Ag/AgCl 的正向电流下进行电沉积。模块被选择性地固定在电极表面上,随后即可进行成功的杂交。金胶粒的优势在于它是一种载体,可以在相同条件下固定任何类型的生物受体,并在电沉积前进行质量控制分析。通过该系统,我们避免了换能器层和生物受体之间的非特异性相互作用,并且在 DNA 寡核苷酸的情况下,允许我们在多模块设备中固定多个序列,以进一步实现更廉价的生物芯片制造的工业化进程。