Potts Jeffrey T, Rybak Ilya A, Paton Julian F R
Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
J Neurosci. 2005 Feb 23;25(8):1965-78. doi: 10.1523/JNEUROSCI.3881-04.2005.
Respiratory and locomotor patterns are coupled during locomotion. The objectives of this study were to (1) demonstrate that respiratory rhythms are entrained by sensory input from somatic afferents, (2) establish whether the parabrachial nucleus mediates entrainment, (3) examine responses of single respiratory neurons in the ventral respiratory group (VRG) to somatic afferent stimulation, and (4) use a computational model of the pontomedullary respiratory network (Rybak et al., 2004a,b) to suggest neuronal mechanisms for entrainment. We used an in situ preparation in young rats that retained pontomedullary respiratory circuits and spinal pathways transmitting somatosensory input. We demonstrate that rhythmic stimulation of somatic afferents entrains respiratory rhythm on a 1:1 basis (1:1), increasing breathing frequency up to approximately 1.4-2.2 times greater than spontaneous frequency. Stable entrainment occurred only when stimuli were delivered during expiration. Reversible blockade of the lateral parabrachial nucleus eliminated entrainment. Somatic afferent stimulation produced significant increases in the firing rate of augmenting expiratory (E2) neurons but shortened the firing duration of postinspiratory (post-I) neurons. A computational model reproduced 1:1 entrainment and other experimental findings based on the assumption that the somatic afferents initiate early onset of inspiration via activation of medullary E2 neurons. The model also predicted that afferent stimulation evoked transient hyperpolarization of ramp-inspiratory (ramp-I) neurons. This was confirmed experimentally by intracellular recording from ramp-I neurons. Our experimental and modeling results demonstrate that an entrainment pathway from somatic afferents to the VRG via the lateral parabrachial nucleus causes resetting of respiratory rhythm through excitation of E2 and consequent inhibition of post-I neurons.
在运动过程中,呼吸模式与运动模式相互耦合。本研究的目的是:(1)证明呼吸节律受躯体传入神经的感觉输入影响;(2)确定臂旁核是否介导这种影响;(3)研究腹侧呼吸组(VRG)中单个呼吸神经元对躯体传入刺激的反应;(4)使用脑桥延髓呼吸网络的计算模型(Rybak等人,2004a,b)来推测这种影响的神经元机制。我们使用了幼鼠的原位标本,该标本保留了脑桥延髓呼吸回路和传递躯体感觉输入的脊髓通路。我们证明,对躯体传入神经的节律性刺激以1:1的比例(1:1)影响呼吸节律,使呼吸频率增加至比自发频率高约1.4 - 2.2倍。只有在呼气期间给予刺激时才会出现稳定的影响。臂旁外侧核的可逆性阻断消除了这种影响。躯体传入刺激使增强性呼气(E2)神经元的放电频率显著增加,但缩短了吸气后(post-I)神经元的放电持续时间。一个计算模型基于躯体传入神经通过激活延髓E2神经元引发吸气提前开始的假设,重现了1:1的影响及其他实验结果。该模型还预测传入刺激会引起斜坡吸气(ramp-I)神经元的短暂超极化。这通过对ramp-I神经元的细胞内记录得到了实验证实。我们的实验和建模结果表明,从躯体传入神经经臂旁外侧核到VRG的影响通路通过兴奋E2并随后抑制post-I神经元导致呼吸节律重置。