Steenbergen Susan M, Lichtensteiger Carol A, Caughlan Ruth, Garfinkle Jackie, Fuller Troy E, Vimr Eric R
Laboratory of Sialobiology, Department of Pathobiology, Universityof Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
Infect Immun. 2005 Mar;73(3):1284-94. doi: 10.1128/IAI.73.3.1284-1294.2005.
Pasteurella multocida subsp. multocida is a commensal and opportunistic pathogen of food animals, wildlife, and pets and a zoonotic cause of human infection arising from contacts with these animals. Here, an investigation of multiple serotype A strains demonstrated the occurrence of membrane sialyltransferase. Although P. multocida lacks the genes for the two earliest steps in de novo sialic acid synthesis, adding sialic acid to the growth medium resulted in uptake, activation, and subsequent transfer of sialic acid to a membrane acceptor resembling lipooligosaccharide. Two candidate-activating enzymes with homology to Escherichia coli cytidine 5'-monophospho-N-acetylneuraminate synthetase were overproduced as histidine-tagged polypeptides. The synthetase encoded by pm0187 was at least 37 times more active than the pm1710 gene product, suggesting pm0187 encodes the primary sialic acid cytidylyltransferase in P. multocida. A sialate aldolase (pm1715) mutant unable to initiate dissimilation of internalized sialic acid was not attenuated in the CD-1 mouse model of systemic pasteurellosis, indicating that the nutritional function of sialate catabolism is not required for systemic disease. In contrast, the attenuation of a sialate uptake-deficient mutant supports the essential role in pathogenesis of a sialylation mechanism that is dependent on an environmental (host) supply of sialic acid. The combined results provide the first direct evidence of sialylation by a precursor scavenging mechanism in pasteurellae and of a potential tripartite ATP-independent periplasmic sialate transporter in any species.
多杀性巴氏杆菌多杀亚种是食用动物、野生动物和宠物的共生菌及机会致病菌,也是人类因接触这些动物而感染的人畜共患病原体。在此,对多个血清型A菌株的研究表明存在膜唾液酸转移酶。尽管多杀性巴氏杆菌缺乏从头合成唾液酸的最早两个步骤的基因,但在生长培养基中添加唾液酸会导致其摄取、激活,并随后将唾液酸转移至类似于脂寡糖的膜受体上。两种与大肠杆菌胞苷5'-单磷酸-N-乙酰神经氨酸合成酶具有同源性的候选激活酶以组氨酸标签多肽的形式过量表达。由pm0187编码的合成酶活性至少比pm1710基因产物高37倍,这表明pm0187编码多杀性巴氏杆菌中的主要唾液酸胞苷酰转移酶。在全身性巴氏杆菌病的CD-1小鼠模型中,无法启动内化唾液酸异化作用的唾液酸醛缩酶(pm1715)突变体并未减毒,这表明全身性疾病不需要唾液酸分解代谢的营养功能。相比之下,唾液酸摄取缺陷型突变体减毒支持了唾液酸化机制在发病机制中的重要作用,该机制依赖于环境(宿主)提供的唾液酸。这些综合结果首次直接证明了巴氏杆菌通过前体清除机制进行唾液酸化,以及在任何物种中存在潜在的不依赖三磷酸腺苷的周质唾液酸转运体。