Wilker Erik W, Grant Robert A, Artim Stephen C, Yaffe Michael B
Center for Cancer Research, Department of Biology and Division of Biological Engineering, Massachsuetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Biol Chem. 2005 May 13;280(19):18891-8. doi: 10.1074/jbc.M500982200. Epub 2005 Feb 24.
The 14-3-3 family of proteins includes seven isotypes in mammalian cells that play numerous diverse roles in intracellular signaling. Most 14-3-3 proteins form homodimers and mixed heterodimers between different isotypes, with overlapping roles in ligand binding. In contrast, one mammalian isoform, 14-3-3sigma, expressed primarily in epithelial cells, appears to play a unique role in the cellular response to DNA damage and in human oncogenesis. The biological and structural basis for these 14-3-3sigma-specific functions is unknown. We demonstrate that endogenous 14-3-3sigma preferentially forms homodimers in cells. We have solved the x-ray crystal structure of 14-3-3sigma bound to an optimal phosphopeptide ligand at 2.4 angstroms resolution. The structure reveals the presence of stabilizing ring-ring and salt bridge interactions unique to the 14-3-3sigma homodimer structure and potentially destabilizing electrostatic interactions between subunits in 14-3-3sigma-containing heterodimers, rationalizing preferential homodimerization of 14-3-3sigma in vivo. The interaction of the phosphopeptide with 14-3-3 reveals a conserved mechanism for phospho-dependent ligand binding, implying that the phosphopeptide binding cleft is not the critical determinant of the unique biological properties of 14-3-3sigma. Instead, the structure suggests a second ligand binding site involved in 14-3-3sigma-specific ligand discrimination. We have confirmed this by site-directed mutagenesis of three sigma-specific residues that uniquely define this site. Mutation of these residues to the alternative sequence that is absolutely conserved in all other 14-3-3 isotypes confers upon 14-3-3sigma the ability to bind to Cdc25C, a ligand that is known to bind to other 14-3-3 proteins but not to sigma.
14-3-3蛋白家族在哺乳动物细胞中包含七种同种型,它们在细胞内信号传导中发挥着众多不同的作用。大多数14-3-3蛋白形成同二聚体以及不同同种型之间的混合异二聚体,在配体结合方面具有重叠作用。相比之下,一种主要在上皮细胞中表达的哺乳动物同种型14-3-3σ,似乎在细胞对DNA损伤的反应以及人类肿瘤发生过程中发挥独特作用。这些14-3-3σ特异性功能的生物学和结构基础尚不清楚。我们证明内源性14-3-3σ在细胞中优先形成同二聚体。我们已经以2.4埃的分辨率解析了与最佳磷酸肽配体结合的14-3-3σ的X射线晶体结构。该结构揭示了14-3-3σ同二聚体结构特有的稳定环-环和盐桥相互作用,以及含14-3-3σ的异二聚体中亚基之间潜在的不稳定静电相互作用,这解释了14-3-3σ在体内优先形成同二聚体的原因。磷酸肽与14-3-3的相互作用揭示了磷酸依赖性配体结合的保守机制,这意味着磷酸肽结合裂隙不是14-3-3σ独特生物学特性的关键决定因素。相反,该结构表明存在第二个配体结合位点,参与14-3-3σ特异性配体识别。我们通过对唯一确定该位点的三个σ特异性残基进行定点诱变证实了这一点。将这些残基突变为在所有其他14-3-3同种型中绝对保守的替代序列,使14-3-3σ能够结合Cdc25C,Cdc25C是一种已知能与其他14-3-3蛋白结合但不能与σ结合的配体。