Zhang Haihong, Zhang Bailing, Huang Weimin, Tian Qi
Institute for Infocomm Research, Singapore 119613.
IEEE Trans Neural Netw. 2005 Jan;16(1):275-8. doi: 10.1109/TNN.2004.841811.
This letter describes a high-performance face recognition system by combining two recently proposed neural network models, namely Gabor wavelet network (GWN) and kernel associative memory (KAM), into a unified structure called Gabor wavelet associative memory (GWAM). GWAM has superior representation capability inherited from GWN and consequently demonstrates a much better recognition performance than KAM. Extensive experiments have been conducted to evaluate a GWAM-based recognition scheme using three popular face databases, i.e., FERET database, Olivetti-Oracle Research Lab (ORL) database and AR face database. The experimental results consistently show our scheme's superiority and demonstrate its very high-performance comparing favorably to some recent face recognition methods, achieving 99.3% and 100% accuracy, respectively, on the former two databases, exhibiting very robust performance on the last database against varying illumination conditions.
这封信描述了一种高性能人脸识别系统,该系统通过将最近提出的两种神经网络模型,即加博尔小波网络(GWN)和核关联记忆(KAM),组合成一种称为加博尔小波关联记忆(GWAM)的统一结构。GWAM继承了GWN的卓越表示能力,因此展示出比KAM更好的识别性能。已进行了广泛实验,以使用三个流行的人脸数据库,即FERET数据库、奥利维蒂-甲骨文研究实验室(ORL)数据库和AR人脸数据库,来评估基于GWAM的识别方案。实验结果一致表明我们方案的优越性,并证明其高性能,与一些最近的人脸识别方法相比表现良好,在前两个数据库上分别达到了99.3%和100%的准确率,在最后一个数据库上针对不同光照条件表现出非常稳健的性能。