Lu Wei, Rajapakse Jagath C
School of Computer Engineering, Nanyang Technological University, Singapore 639798.
IEEE Trans Neural Netw. 2005 Jan;16(1):203-12. doi: 10.1109/TNN.2004.836795.
This paper presents the technique of constrained independent component analysis (cICA) and demonstrates two applications, less-complete ICA, and ICA with reference (ICA-R). The cICA is proposed as a general framework to incorporate additional requirements and prior information in the form of constraints into the ICA contrast function. The adaptive solutions using the Newton-like learning are proposed to solve the constrained optimization problem. The applications illustrate the versatility of the cICA by separating subspaces of independent components according to density types and extracting a set of desired sources when rough templates are available. The experiments using face images and functional MR images demonstrate the usage and efficacy of the cICA.
本文介绍了约束独立成分分析(cICA)技术,并展示了两种应用,即欠完备独立成分分析和带参考的独立成分分析(ICA-R)。提出cICA作为一个通用框架,以将约束形式的额外要求和先验信息纳入ICA对比函数。提出了使用类牛顿学习的自适应解决方案来解决约束优化问题。这些应用通过根据密度类型分离独立成分的子空间,并在有粗糙模板可用时提取一组期望的源,说明了cICA的通用性。使用面部图像和功能磁共振图像进行的实验证明了cICA的用法和有效性。