Glover Scott, Dixon Peter
Pennsylvania State University, University Park, Pennsylvania, USA.
Psychon Bull Rev. 2004 Oct;11(5):791-806. doi: 10.3758/bf03196706.
Empirical studies in psychology typically employ null hypothesis significance testing to draw statistical inferences. We propose that likelihood ratios are a more straightforward alternative to this approach. Likelihood ratios provide a measure of the fit of two competing models; the statistic represents a direct comparison of the relative likelihood of the data, given the best fit of the two models. Likelihood ratios offer an intuitive, easily interpretable statistic that allows the researcher great flexibility in framing empirical arguments. In support of this position, we report the results of a survey of empirical articles in psychology, in which the common uses of statistics by empirical psychologists is examined. From the results of this survey, we show that likelihood ratios are able to serve all the important statistical needs of researchers in empirical psychology in a format that is more straightforward and easier to interpret than traditional inferential statistics.
心理学领域的实证研究通常采用零假设显著性检验来进行统计推断。我们认为,似然比是这种方法更直接的替代方案。似然比提供了对两个相互竞争模型拟合度的一种度量;该统计量代表了在两个模型最佳拟合情况下数据相对似然性的直接比较。似然比提供了一个直观、易于解释的统计量,使研究人员在构建实证论据时具有很大的灵活性。为支持这一观点,我们报告了一项对心理学实证文章的调查结果,其中考察了实证心理学家对统计方法的常见使用情况。从这项调查结果中,我们表明,似然比能够以一种比传统推断统计更直接、更易于解释的形式满足实证心理学研究人员所有重要的统计需求。