Suppr超能文献

基于真实环境中长期加速度信号的抑郁症状严重程度与日常生活步态特征的相关性研究:回顾性分析。

Associations Between Depression Symptom Severity and Daily-Life Gait Characteristics Derived From Long-Term Acceleration Signals in Real-World Settings: Retrospective Analysis.

机构信息

Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Institute of Health Informatics, University College London, London, United Kingdom.

出版信息

JMIR Mhealth Uhealth. 2022 Oct 4;10(10):e40667. doi: 10.2196/40667.

Abstract

BACKGROUND

Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their relationships with depression have yet to be fully explored.

OBJECTIVE

The aim of this study was to explore associations between depression symptom severity and daily-life gait characteristics derived from acceleration signals in real-world settings.

METHODS

We used two ambulatory data sets (N=71 and N=215) with acceleration signals collected by wearable devices and mobile phones, respectively. We extracted 12 daily-life gait features to describe the distribution and variance of gait cadence and force over a long-term period. Spearman coefficients and linear mixed-effects models were used to explore the associations between daily-life gait features and depression symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15) and 8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The likelihood-ratio (LR) test was used to test whether daily-life gait features could provide additional information relative to the laboratory gait features.

RESULTS

Higher depression symptom severity was significantly associated with lower gait cadence of high-performance walking (segments with faster walking speed) over a long-term period in both data sets. The linear regression model with long-term daily-life gait features (R=0.30) fitted depression scores significantly better (LR test P=.001) than the model with only laboratory gait features (R=0.06).

CONCLUSIONS

This study indicated that the significant links between daily-life walking characteristics and depression symptom severity could be captured by both wearable devices and mobile phones. The daily-life gait patterns could provide additional information for predicting depression symptom severity relative to laboratory walking. These findings may contribute to developing clinical tools to remotely monitor mental health in real-world settings.

摘要

背景

步态是抑郁的一个重要表现。然而,日常行走中的步态特征及其与抑郁的关系尚未得到充分探索。

目的

本研究旨在探讨基于可穿戴设备和手机采集的加速度信号,在真实环境下,抑郁症状严重程度与日常生活中步态特征之间的关系。

方法

我们使用了两个带有加速度信号的动态数据(N=71 和 N=215),分别来自可穿戴设备和手机。我们提取了 12 个日常生活步态特征,以描述步态步频和力在长期内的分布和变化。采用斯皮尔曼相关系数和线性混合效应模型,探讨了日常生活步态特征与使用老年抑郁量表(GDS-15)和 8 项患者健康问卷(PHQ-8)自我报告问卷测量的抑郁症状严重程度之间的关系。似然比(LR)检验用于检验日常生活步态特征相对于实验室步态特征是否能提供额外信息。

结果

在两个数据集均显示,较高的抑郁症状严重程度与长期内(高绩效行走时的)较高步频的降低显著相关。与仅使用实验室步态特征的模型(R²=0.06)相比,包含长期日常生活步态特征的线性回归模型(R²=0.30)拟合抑郁评分的效果显著更好(LR 检验 P=.001)。

结论

本研究表明,可穿戴设备和手机均可捕捉日常生活行走特征与抑郁症状严重程度之间的显著关联。日常生活步态模式可能提供比实验室行走更能预测抑郁症状严重程度的额外信息。这些发现可能有助于开发临床工具,以便在真实环境中远程监测心理健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c83/9579931/9751876441a9/mhealth_v10i10e40667_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验