Suppr超能文献

噪声环境下鱼类的听觉

Hearing in fishes under noise conditions.

作者信息

Wysocki Lidia Eva, Ladich Friedrich

机构信息

Institute of Zoology, University of Vienna, Athanstrasse 14, 1090 Vienna, Austria.

出版信息

J Assoc Res Otolaryngol. 2005 Mar;6(1):28-36. doi: 10.1007/s10162-004-4043-4.

Abstract

Our current knowledge on sound detection in fishes is mainly based on data acquired under quiet laboratory conditions. However, it is important to relate auditory thresholds to background noise in order to determine the signal-detecting abilities of animals in the natural environment. We investigated the influence of two noise levels within the naturally occurring range on the auditory sensitivity of two hearing specialists (otophysines) and a hearing generalist. Audiograms of the goldfish Carassius auratus, the lined Raphael catfish Platydoras costatus and the pumpkinseed sunfish Lepomis gibbosus (hearing generalist) were determined between 200 and 4000 Hz (100-800 Hz for L. gibbosus) under laboratory conditions and under continuous white noise by recording auditory evoked potentials (AEPs). Baseline thresholds showed greatest hearing sensitivity around 500 Hz in goldfish and catfish and at 100 Hz in the sunfish. Continuous white noise of 110 dB RMS elevated the thresholds by 15-20 dB in C. auratus and by 4-22 dB in P. costatus. White noise of 130 dB RMS elevated overall hearing thresholds significantly in the otophysines by 23-44 dB. In the goldfish, threshold did not shift at 4 kHz. In contrast, auditory thresholds in the sunfish declined only at the higher noise level by 7-11 dB. Our data show that the AEP recording technique is suitable for studying masking in fishes, and that the occurrence and degree of the threshold shift (masking) depend on the hearing sensitivity of fishes, the frequency, and noise levels tested. The results indicate that acoustic communication and orientation of fishes, in particular of hearing specialists, are limited by noise regimes in their environment.

摘要

我们目前对鱼类声音检测的认识主要基于在安静实验室条件下获取的数据。然而,将听觉阈值与背景噪声联系起来对于确定动物在自然环境中的信号检测能力很重要。我们研究了自然发生范围内的两种噪声水平对两种听觉专家(骨鳔鱼类)和一种听觉通才的听觉敏感性的影响。通过记录听觉诱发电位(AEP),在实验室条件下和连续白噪声环境中,测定了金鱼Carassius auratus、条纹拉斐尔鲶鱼Platydoras costatus和南瓜籽太阳鱼Lepomis gibbosus(听觉通才)在200至4000赫兹(L. gibbosus为100至800赫兹)之间的听力图。基线阈值显示,金鱼和鲶鱼在500赫兹左右听力最敏感,太阳鱼在100赫兹时最敏感。均方根值为110分贝的连续白噪声使金鱼的阈值提高了15至20分贝,使条纹拉斐尔鲶鱼的阈值提高了4至22分贝。均方根值为130分贝的白噪声使骨鳔鱼类的总体听力阈值显著提高了23至44分贝。在金鱼中,4千赫兹时阈值没有变化。相比之下,太阳鱼的听觉阈值仅在较高噪声水平下下降了7至11分贝。我们的数据表明,AEP记录技术适用于研究鱼类的掩蔽现象,并且阈值变化(掩蔽)的发生和程度取决于鱼类的听力敏感性、频率和测试的噪声水平。结果表明,鱼类,特别是听觉专家的声学通讯和定向受到其环境中噪声状况的限制。

相似文献

1
Hearing in fishes under noise conditions.
J Assoc Res Otolaryngol. 2005 Mar;6(1):28-36. doi: 10.1007/s10162-004-4043-4.
3
Diversity in noise-induced temporary hearing loss in otophysine fishes.
J Acoust Soc Am. 2003 Apr;113(4 Pt 1):2170-9. doi: 10.1121/1.1557212.
4
Hearing in cichlid fishes under noise conditions.
PLoS One. 2013;8(2):e57588. doi: 10.1371/journal.pone.0057588. Epub 2013 Feb 28.
5
How does tripus extirpation affect auditory sensitivity in goldfish?
Hear Res. 2003 Aug;182(1-2):119-29. doi: 10.1016/s0378-5955(03)00188-6.
6
Does speaker presentation affect auditory evoked potential thresholds in goldfish?
Comp Biochem Physiol A Mol Integr Physiol. 2009 Nov;154(3):341-6. doi: 10.1016/j.cbpa.2009.07.004. Epub 2009 Jul 12.
9
Noise-induced masking of hearing in a labyrinth fish: effects on sound detection in croaking gouramis.
PeerJ. 2022 Nov 10;10:e14230. doi: 10.7717/peerj.14230. eCollection 2022.

引用本文的文献

1
Responses to sound in three Centrarchid species: Do heterospecific interactions change behavior?
J Fish Biol. 2025 Feb;106(2):256-265. doi: 10.1111/jfb.15955. Epub 2024 Oct 6.
2
Hearing in catfishes: 200 years of research.
Fish Fish (Oxf). 2023 Jul;24(4):618-634. doi: 10.1111/faf.12751. Epub 2023 Apr 20.
3
Noise-induced masking of hearing in a labyrinth fish: effects on sound detection in croaking gouramis.
PeerJ. 2022 Nov 10;10:e14230. doi: 10.7717/peerj.14230. eCollection 2022.
5
The effect of biological and anthropogenic sound on the auditory sensitivity of oyster toadfish, Opsanus tau.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Jan;206(1):1-14. doi: 10.1007/s00359-019-01381-x. Epub 2019 Dec 10.
7
Ecology of sound communication in fishes.
Fish Fish (Oxf). 2019 May;20(3):552-563. doi: 10.1111/faf.12368. Epub 2019 Apr 8.
9
Coral reef soundscapes may not be detectable far from the reef.
Sci Rep. 2016 Aug 23;6:31862. doi: 10.1038/srep31862.
10
Auditory evoked potential audiometry in fish.
Rev Fish Biol Fish. 2013;23(3):317-364. doi: 10.1007/s11160-012-9297-z. Epub 2013 Jan 18.

本文引用的文献

3
The representation of conspecific sounds in the auditory brainstem of teleost fishes.
J Exp Biol. 2003 Jul;206(Pt 13):2229-40. doi: 10.1242/jeb.00417.
4
Diversity in noise-induced temporary hearing loss in otophysine fishes.
J Acoust Soc Am. 2003 Apr;113(4 Pt 1):2170-9. doi: 10.1121/1.1557212.
5
Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem responses.
Hear Res. 2002 Jul;169(1-2):36-46. doi: 10.1016/s0378-5955(02)00336-2.
7
Masking in three pinnipeds: underwater, low-frequency critical ratios.
J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1322-6. doi: 10.1121/1.1288409.
8
Why pinnipeds don't echolocate.
J Acoust Soc Am. 2000 Apr;107(4):2256-64. doi: 10.1121/1.428506.
9
Did auditory sensitivity and vocalization evolve independently in otophysan fishes?
Brain Behav Evol. 1999 May-Jun;53(5-6):288-304. doi: 10.1159/000006600.
10
A comparative study of hearing ability in fishes: the auditory brainstem response approach.
J Comp Physiol A. 1998 Mar;182(3):307-18. doi: 10.1007/s003590050181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验