Suppr超能文献

关于受孕概率预测因素的贝叶斯推断。

Bayesian inferences on predictors of conception probabilities.

作者信息

Dunson David B, Stanford Joseph B

机构信息

Biostatistics Branch, National Institute of Environmental Health Sciences, MD A3-03, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA.

出版信息

Biometrics. 2005 Mar;61(1):126-33. doi: 10.1111/j.0006-341X.2005.031231.x.

Abstract

Reproductive scientists and couples attempting pregnancy are interested in identifying predictors of the day-specific probabilities of conception in relation to the timing of a single intercourse act. Because most menstrual cycles have multiple days of intercourse, the occurrence of conception represents the aggregation across Bernoulli trials for each intercourse day. Because of this data structure and dependency among the multiple cycles from a woman, implementing analyses has proven challenging. This article proposes a Bayesian approach based on a generalization of the Barrett and Marshall model to incorporate a woman-specific frailty and day-specific covariates. The model results in a simple closed form expression for the marginal probability of conception, and has an auxiliary variables formulation that facilitates efficient posterior computation. Although motivated by fecundability studies, the approach can be used for efficient variable selection and model averaging in general applications with categorical or discrete event time data.

摘要

生殖科学家和尝试怀孕的夫妇都对确定单次性交行为时间与特定日期受孕概率的预测因素感兴趣。由于大多数月经周期都有多个性交日,受孕的发生代表了每个性交日伯努利试验的汇总。由于这种数据结构以及女性多个周期之间的依赖性,实施分析已被证明具有挑战性。本文提出了一种基于巴雷特和马歇尔模型推广的贝叶斯方法,以纳入女性特定的脆弱性和特定日期的协变量。该模型得出了受孕边际概率的简单封闭形式表达式,并具有便于有效后验计算的辅助变量公式。尽管该方法是受生育力研究的推动,但它可用于具有分类或离散事件时间数据的一般应用中的有效变量选择和模型平均。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验