Suppr超能文献

Chemometrical exploration of the wet precipitation chemistry from the Austrian Monitoring Network (1988-1999).

作者信息

Stanimirova I, Daszykowski M, Massart D L, Questier F, Simeonov V, Puxbaum H

机构信息

ChemoAC, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.

出版信息

J Environ Manage. 2005 Mar;74(4):349-63. doi: 10.1016/j.jenvman.2004.08.018. Epub 2005 Jan 25.

Abstract

The present paper deals with the application of different chemometric methods to an environmental data set derived from the monitoring of wet precipitation in Austria (1988-1999). These methods are: principal component analysis (PCA); projection pursuit (PP); density-based spatial clustering of application with noise (DBSCAN); ordering points to identify the clustering structures (OPTICS); self-organizing maps (SOM), also called the Kohonen network; and the neural gas (NG) network. The aim of the study is to introduce some new approaches into environmetrics and to compare their usefulness with already existing techniques for the classification and interpretation of environmental data. The density-based approaches give information about the occurrence of natural clusters in the studied data set, which, however, do not occur in the case presented here; information about high-density zones (very similar samples) and extreme samples is also obtained. The partitioning techniques (clustering, but also neural gas and Kohonen networks) offer an opportunity to classify the objects of interest into several defined groups, the patterns of ionic concentration of which can be studied in detail. The visual aids, such as the color map and the Kohonen map, for each site are very helpful in understanding the relationships between samples and between samples and variables. All methods, and in particular projection pursuit, give information about samples with extreme characteristics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验