Bartlett Rodney J, Grabowski Ireneusz, Hirata So, Ivanov Stanislav
Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
J Chem Phys. 2005 Jan 15;122(3):34104. doi: 10.1063/1.1809605.
From coupled-cluster theory and many-body perturbation theory we derive the local exchange-correlation potential of density functional theory in an orbital dependent form. We show the relationship between the coupled-cluster approach and density functional theory, and connections and comparisons with our previous second-order correlation potential [OEP-MBPT(2) (OEP-optimized effective potential)] [I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett, J. Chem. Phys. 116, 4415 (2002)]. Starting from a general theoretical framework based on the density condition in Kohn-Sham theory, we define a rigorous exchange-correlation functional, potential and orbitals. Specifying initially to second-order terms, we show that our ab initio correlation potential provides the correct shape compared to those from reference quantum Monte Carlo calculations, and we demonstrate the superiority of using Fock matrix elements or more general infinite-order semicanonical transformations. This enables us to introduce a method that is guaranteed to converge to the right answer in the correlation and basis set limit, just as does ab initio wave function theory. We also demonstrate that the energies obtained from this generalized second-order method [OEP-MBPT2-f] and [OEP-MBPT2-sc] are often of coupled-cluster accuracy and substantially better than ordinary Hartree-Fock based second-order MBPT=MP2.
我们从耦合簇理论和多体微扰理论出发,推导了密度泛函理论中轨道依赖形式的局域交换关联势。我们展示了耦合簇方法与密度泛函理论之间的关系,以及与我们之前的二阶关联势[OEP-MBPT(2)(OEP-优化有效势)][I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett, J. Chem. Phys. 116, 4415 (2002)]的联系和比较。从基于Kohn-Sham理论密度条件的一般理论框架出发,我们定义了一个严格的交换关联泛函、势和轨道。最初指定到二阶项,我们表明与参考量子蒙特卡罗计算得到的相比,我们的从头算关联势提供了正确的形状,并且我们展示了使用福克矩阵元或更一般的无穷阶半规范变换的优越性。这使我们能够引入一种方法,该方法在关联和基组极限下保证收敛到正确答案,就像从头算波函数理论一样。我们还证明,从这种广义二阶方法[OEP-MBPT2-f]和[OEP-MBPT2-sc]获得的能量通常具有耦合簇精度,并且比基于普通Hartree-Fock的二阶MBPT(即MP2)要好得多。