Computational and Soft Matter Physics, Universität Wien, Sensengasse 8/9, A-1090 Wien, Austria.
Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Av. F.A. Forel 2, CH-1015 Lausanne, Switzerland.
J Chem Theory Comput. 2020 Oct 13;16(10):6550-6559. doi: 10.1021/acs.jctc.0c00724. Epub 2020 Sep 28.
The calculation of electron correlation is vital for the description of atomistic phenomena in physics, chemistry, and biology. However, accurate wavefunction-based methods exhibit steep scaling and often sluggish convergence with respect to the basis set at hand. Because of their delocalization and ease of extrapolation to the basis-set limit, plane waves would be ideally suited for the calculation of basis-set limit correlation energies. However, the routine use of correlated wavefunction approaches in a plane-wave basis set is hampered by prohibitive scaling due to a large number of virtual continuum states and has not been feasible for all but the smallest systems, even if substantial computational resources are available and methods with comparably beneficial scaling, such as the Møller-Plesset perturbation theory to second order (MP2), are used. Here, we introduce a stochastic sampling of the MP2 integrand based on Monte Carlo summation over continuum orbitals, which allows for speedups of up to a factor of 1000. Given a fixed number of sampling points, the resulting algorithm is dominated by a flat scaling of . Absolute correlation energies are accurate to <0.1 kcal/mol with respect to conventional calculations for several hundreds of electrons. This allows for the calculation of unbiased basis-set limit correlation energies for systems containing hundreds of electrons with unprecedented efficiency gains based on a straightforward treatment of continuum contributions.
电子相关的计算对于物理、化学和生物学中原子现象的描述至关重要。然而,基于波函数的精确方法在当前基组下表现出陡峭的尺度和缓慢的收敛。由于平面波的离域性和易于外推到基组极限,它们非常适合计算基组极限相关能量。然而,由于大量的虚拟连续态,相关波函数方法在平面波基组中的常规使用受到了禁止性的尺度限制,即使有大量的计算资源可用,并且使用了具有类似有益尺度的方法,如二阶莫尔-普莱塞特微扰理论(MP2),也只能应用于最小的体系。在这里,我们提出了一种基于连续轨道蒙特卡罗求和的 MP2 积分元的随机抽样方法,该方法可以将速度提高高达 1000 倍。在给定固定数量的采样点的情况下,所得算法主要由平坦的 尺度控制。对于数百个电子,与传统计算相比,绝对相关能量的精度达到 <0.1 kcal/mol。这允许基于对连续贡献的直接处理,为包含数百个电子的系统计算无偏的基组极限相关能量,并获得前所未有的效率提升。