Suppr超能文献

Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method.

作者信息

Fedorov Dmitri G, Kitaura Kazuo

机构信息

National Institute of Advanced Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-6568, Japan.

出版信息

J Chem Phys. 2005 Feb 1;122(5):54108. doi: 10.1063/1.1835954.

Abstract

The fragment molecular orbital (FMO) method was combined with the multiconfiguration self-consistent-field (MCSCF) theory. One- and two-layer approaches were developed, the former involving all dimer MCSCF calculations and the latter limiting MCSCF calculations to a small part of the system. The accuracy of the two methods was tested using the six electrons in six orbitals complete active space type of MCSCF and singlet spin state for phenol+(H(2)O)(n), n=16,32,64 (6-31G( *) and 6-311G( *) basis sets); alpha helices and beta strands of phenylalanine-(alanine)(n), n=4,8,16 (6-31G( *)). Both double-zeta and triple-zeta quality basis sets with polarization were found to have very similar accuracy. The error in the correlation energy was at most 0.000 88 a.u., the error in the gradient of the correlation energy was at most 6.x10(-5) a.u./bohr and the error in the correlation correction to the dipole moment was at most 0.018 D. In addition, vertical singlet-triplet electron excitation energies were computed for phenol+(H(2)O)(n), (n=16,32,64), 6-31G( *), and the errors were found to be at most 0.02 eV. Approximately linear scaling was observed for the FMO-based MCSCF methods. As an example, an FMO-based MCSCF calculation with 1262 basis functions took 98 min on one 3.0 GHz Pentium4 node with 1 Gbyte RAM.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验